OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 34 — Dec. 1, 2013
  • pp: 8258–8269

Photoacoustic pulse wave forming along the rotation axis of an ellipsoid droplet: a geometric calculation study

Yong Li and Hui Fang  »View Author Affiliations

Applied Optics, Vol. 52, Issue 34, pp. 8258-8269 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A geometric calculation method is developed to study the pulsed photoacoustic wave forming of an arbitrarily shaped droplet. It is found that for an ellipsoid droplet, either a prolate ellipsoid or an oblate ellipsoid, strict analytical formulas for describing the wave profile developed along the rotation axis can be derived. The results show intriguing differences compared to those of a sphere droplet in terms of the multiple geometric parameters being in effect, the pulse wave profile variant, and the existing of unlimited points of infinite tensile pressure.

© 2013 Optical Society of America

OCIS Codes
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(350.4990) Other areas of optics : Particles

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 17, 2013
Revised Manuscript: September 11, 2013
Manuscript Accepted: October 20, 2013
Published: November 25, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Yong Li and Hui Fang, "Photoacoustic pulse wave forming along the rotation axis of an ellipsoid droplet: a geometric calculation study," Appl. Opt. 52, 8258-8269 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. J. Diebold, M. I. Khan, and S. M. Park, “Photoacoustic ‘signatures’ of particulate matter: optical production of acoustic monopole radiation,” Science 250, 101–104 (1990). [CrossRef]
  2. G. J. Diebold, S. Tun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67, 3384–3387 (1991). [CrossRef]
  3. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (American Institute of Physics, 1993).
  4. L. V. Wang and H. I. Wu, Biomedical Optics: Principles and Imaging (Wiley, 2007).
  5. C. G. A. Hoelen and F. F. M. De Mul, “A new theoretical approach to photoacoustic signal generation,” J. Acoust. Soc. Am. 106, 695–706 (1999). [CrossRef]
  6. G. J. Diebold and P. J. Westervelt, “The photoacoustic effect generated by a spherical droplet in a fluid,” J. Acoust. Soc. Am. 84, 2245–2251 (1988). [CrossRef]
  7. G. J. Diebold, A. C. Beveridge, and T. J. Hamilton, “The photoacoustic effect generated by an incompressible sphere,” J. Acoust. Soc. Am. 112, 1780–1786 (2002).
  8. M. I. Khan, T. Sun, and G. J. Diebold, “Photoacoustic waves generated by absorption of laser radiation in optically thin cylinders,” J. Acoust. Soc. Am. 94, 931–940 (1993). [CrossRef]
  9. C.-L. Hu, “Spherical model of an acoustical wave generated by rapid laser heating in a liquid,” J. Acoust. Soc. Am. 46, 728–736 (1969). [CrossRef]
  10. J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E. 59, 5772–5789 (1999). [CrossRef]
  11. S. J. Till and P. K. Milsom, “A simplified physical model of pressure wave dynamics and acoustic wave generation induced by laser absorption in the retina,” Bullet. Math. Bio. 66, 791–808 (2004). [CrossRef]
  12. E. Faraggi and B. S. Gerstman, “Acoustical resonant absorption of pulsed laser radiation by a spherical absorber,” J. Appl. Phys. 102, 123505 (2007). [CrossRef]
  13. C. G. A. Hoelen, F. F. M. De Mul, R. Pongers, and A. Dekker, “Three-dimensional photoacoustic imaging of blood vessels in tissue,” Opt. Lett. 23, 648–650 (1998). [CrossRef]
  14. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. de Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Select. Top. Quant. Electron. 9, 343–346 (2003). [CrossRef]
  15. R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, “Imaging of small vessels using photoacoustics: an in vivo study,” Las. Surg. Med. 35, 354–362 (2004). [CrossRef]
  16. R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt. 17, 055002 (2012). [CrossRef]
  17. E. Hysi, R. K. Saha, and M. C. Kolios, “On the use of photoacoustics to detect red blood cell aggregation,” Biomed. Opt. Express 3, 2326–2338 (2012). [CrossRef]
  18. R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt. 16, 115003 (2011). [CrossRef]
  19. R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129, 2935–2943 (2011). [CrossRef]
  20. I. G. Calasso, W. Craig, and G. J. Diebold, “Photoacoustic point source,” Phys. Rev. Lett. 86, 3550–3553 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited