OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 34 — Dec. 1, 2013
  • pp: 8305–8309

Broadband THz-wave generation by satisfying the noncollinear phase-matching condition with a reflected signal beam

Takuya Akiba, Yasuhiro Akimoto, Motoaki Tamura, Koji Suizu, Katsuhiko Miyamoto, Takashige Omatsu, Jun Takayanagi, Tomoya Takada, and Kodo Kawase  »View Author Affiliations

Applied Optics, Vol. 52, Issue 34, pp. 8305-8309 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (491 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrated broadband terahertz (THz) wave generation by satisfying the noncollinear phase-matching condition with a reflected signal beam. We constructed a dual-wavelength optical parametric oscillator with two potassium titanium oxide phosphate crystals pumped by a frequency-doubled Nd:YAG laser. The collinear pump and signal waves were irradiated into a lithium niobate crystal. The pump and the signal waves were reflected at the crystal surface. Because the pump and the signal waves have a finite beam diameter, when the reflected signal wave and unreflected pump wave were irradiated at the correct angle, the noncollinear phase-matching condition was satisfied. By changing the incident angle to the crystal, broadband THz-wave generation with a range of over 0.2–7.2 THz was achieved.

© 2013 Optical Society of America

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

Original Manuscript: September 25, 2013
Revised Manuscript: October 31, 2013
Manuscript Accepted: October 31, 2013
Published: November 25, 2013

Takuya Akiba, Yasuhiro Akimoto, Motoaki Tamura, Koji Suizu, Katsuhiko Miyamoto, Takashige Omatsu, Jun Takayanagi, Tomoya Takada, and Kodo Kawase, "Broadband THz-wave generation by satisfying the noncollinear phase-matching condition with a reflected signal beam," Appl. Opt. 52, 8305-8309 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  2. T. Kiwa, J. Kondo, S. Oka, I. Kawayama, H. Yamada, M. Tonouchi, and K. Tsukada, “Chemical sensing plate with a laser-terahertz monitoring system,” Appl. Opt. 47, 3324–3327 (2008). [CrossRef]
  3. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quantum Electron. 2, 679–692 (1996). [CrossRef]
  4. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography,” Opt. Lett. 22, 904–906 (1997). [CrossRef]
  5. K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011). [CrossRef]
  6. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68, 2483–2485 (1996). [CrossRef]
  7. J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microwave Theor. Tech. 48, 653–661 (2000). [CrossRef]
  8. G. D. Boyd, T. J. Bridges, C. K. N. Patel, and E. Buehler, “Phase-matched submillimeter wave generation by difference-frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972). [CrossRef]
  9. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002). [CrossRef]
  10. A. Rice, Y. Jin, X. F. Ma, X. C. Zhang, D. Bliss, J. Larkin, and M. Alexander, “Terahertz optical rectification from 〈110〉 zinc-blende crystals,” Appl. Phys. Lett. 64, 1324–1326 (1994). [CrossRef]
  11. A. Nahata, J. T. Yardley, and T. F. Heinz, “Free-space electro-optic detection of continuous-wave terahertz radiation,” Appl. Phys. Lett. 75, 2524–2526 (1999). [CrossRef]
  12. T. Tanabe, K. Suto, J. Nishizawa, K. Saito, and T. Kimura, “Tunable terahertz wave generation in the 3- to 7-THz region from GaP,” Appl. Phys. Lett. 83, 237–239 (2003). [CrossRef]
  13. W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540  μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635–1637 (2004). [CrossRef]
  14. K. Suizu, K. Miyamoto, T. Yamashita, and H. Ito, “High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter,” Opt. Lett. 32, 2885–2887 (2007). [CrossRef]
  15. K. Miyamoto, H. Minamide, M. Fujiwara, H. Hashimoto, and H. Ito, “Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal,” Opt. Lett. 33, 252–254 (2008). [CrossRef]
  16. Y. S. Lee, T. Meade, M. DeCamp, T. B. Norris, and A. Galvanauskas, “Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate,” Appl. Phys. Lett. 77, 1244–1246 (2000). [CrossRef]
  17. Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitted difference-frequency generation in periodically poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514 (2001). [CrossRef]
  18. Y. Sasaki, Y. Avetisyan, K. Kawase, and H. Ito, “Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal,” Appl. Phys. Lett. 81, 3323–3325 (2002). [CrossRef]
  19. Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, “Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate,” Opt. Lett. 30, 2927–2929 (2005). [CrossRef]
  20. M. I. Bakunov, A. V. Maslov, and S. B. Bodrov, “Cherenkov radiation of terahertz surface plasmon polaritons from a superluminal optical spot,” Phys. Rev. B 72, 195336 (2005). [CrossRef]
  21. K. Suizu, T. Shibuya, T. Akiba, T. Tsutsui, C. Otani, and K. Kawase, “Čherenkov phase-matched monochromatic THz-wave generation using difference frequency generation with a lithium niobate crystal,” Opt. Express 16, 7493–7498 (2008). [CrossRef]
  22. K. Suizu, K. Koketsu, T. Shibuya, T. Tsutsui, T. Akiba, and K. Kawase, “Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation,” Opt. Express 17, 6676–6681 (2009). [CrossRef]
  23. T. Shibuya, T. Tsutsui, K. Suizu, T. Akiba, and K. Kawase, “Efficient Cherenkov-type phase-matched widely tunable terahertz-wave generation via an optimized pump beam shape,” Appl. Phys. Express 2, 032302 (2009). [CrossRef]
  24. K. Suizu, T. Tsutsui, T. Shibuya, T. Akiba, and K. Kawase, “Cherenkov phase matched THz-wave generation with surfing configuration for bulk lithium nobate crystal,” Opt. Express 17, 7102–7109 (2009). [CrossRef]
  25. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), pp. 695–702.
  26. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997). [CrossRef]
  27. P. E. Powers, Fundamentals of Nonlinear Optics (CRC Press, 2011), p. 92.
  28. J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large-area THz-pulse generation,” Opt. Express 10, 1161–1165 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited