OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 34 — Dec. 1, 2013
  • pp: 8310–8317

Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors

Thomas Godin, Michael Fromager, Emmanuel Cagniot, Marc Brunel, and Kamel Aït-Ameur  »View Author Affiliations


Applied Optics, Vol. 52, Issue 34, pp. 8310-8317 (2013)
http://dx.doi.org/10.1364/AO.52.008310


View Full Text Article

Enhanced HTML    Acrobat PDF (793 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new device that is able to perform highly sensitive wavefront measurements based on the use of continuous position sensitive detectors and without resorting to any reconstruction process. We demonstrate experimentally its ability to measure small wavefront distortions through the characterization of pump-induced refractive index changes in laser material. In addition, it is shown using computer-generated holograms that this device can detect phase discontinuities as well as improve the quality of sharp phase variations measurements. Results are compared to reference Shack–Hartmann measurements, and dramatic enhancements are obtained.

© 2013 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(140.3295) Lasers and laser optics : Laser beam characterization

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 25, 2013
Manuscript Accepted: October 22, 2013
Published: November 25, 2013

Citation
Thomas Godin, Michael Fromager, Emmanuel Cagniot, Marc Brunel, and Kamel Aït-Ameur, "Reconstruction-free sensitive wavefront sensor based on continuous position sensitive detectors," Appl. Opt. 52, 8310-8317 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-34-8310


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Clare, M. Le Louarn, and C. Béchet, “Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes,” Appl. Opt. 50, 473–483 (2011). [CrossRef]
  2. U. Wittrock, Adaptative Optics for Industry and Medicine, Springer Proceeding in Physics (Springer, 2003).
  3. M. Paurisse, M. Hanna, F. Druon, and P. Georges, “Wavefront control of a multicore ytterbium-doped pulse fiber amplifier by digital holography,” Opt. Lett. 35, 1428–1430 (2010). [CrossRef]
  4. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003). [CrossRef]
  5. D. Rativa, R. E. de Araujo, A. S. L. Gomes, and B. Vohnsen, “Hartmann–Shack wavefront sensing for nonlinear materials characterization,” Opt. Express 17, 22047–22053 (2009). [CrossRef]
  6. M. Paurisse, L. Lévèque, M. Hanna, F. Druon, and P. Georges, “Complete measurement of fiber modal content by wavefront analysis,” Opt. Express 20, 4074–4084 (2012). [CrossRef]
  7. D. Wanjun, H. Dongxia, Z. Wei, Z. Junpu, J. Feng, Y. Zeping, Z. Kun, J. Xuejun, D. Wu, Z. Runchang, P. Zhitao, and F. Bin, “Beam wavefront control of a thermal inertia laser for inertial confinement fusion application,” Appl. Opt. 48, 3691–3694 (2009). [CrossRef]
  8. S. Velghe, J. Primot, N. Guérineau, M. Cohen, and B. Wattellier, “Wave-front reconstruction from multidirectional phase derivatives generated by multilateral shearing interferometers,” Opt. Lett. 30, 245–247 (2005). [CrossRef]
  9. C. Schulze, D. Naidoo, D. Flamm, O. A. Schmidt, A. Forbes, and M. Duparré, “Wavefront reconstruction by modal decomposition,” Opt. Express 20, 19714–19725 (2012). [CrossRef]
  10. S. Marcos, L. Diaz-Santanna, L. Llorente, and C. Dainty, “Ocular aberrations with ray tracing and Shack–Hartmann wave-front sensors: does polarization play a role?” J. Opt. Soc. Am. A 19, 1063–1072 (2002). [CrossRef]
  11. S. Wang, C. Rao, H. Xian, J. Zhang, J. Wang, and Z. Liu, “Laboratory demonstrations on a pyramid wavefront sensor without modulation for closed-loop adaptive optics system,” Opt. Express 19, 8135–8150 (2011). [CrossRef]
  12. K. Rahbar, K. Faez, and E. Attaran-Kakhki, “Estimation of phase wave-front aberration distribution function using wavelet transform profilometry,” Appl. Opt. 51, 3380–3386 (2012). [CrossRef]
  13. S. K. Mishra, R. Bhatt, D. Mohan, A. K. Gupta, and A. Sharma, “Differential modal Zernike wavefront sensor employing a computer-generated hologram: a proposal,” Appl. Opt. 48, 6458–6465 (2009). [CrossRef]
  14. B. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
  15. D. R. Neal, J. Copland, and D. Neal, “Shack–Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002). [CrossRef]
  16. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack–Hartmann sensor,” Appl. Opt. 31, 6902–6908 (1992). [CrossRef]
  17. S. Chénais, F. Druon, F. Balembois, G. Lucas-Leclin, Y. Fichot, P. Georges, R. Gaume, B. Viana, G. P. Aka, and D. Vivien, “Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW,” Opt. Mater. 22, 129–137 (2003). [CrossRef]
  18. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  19. T. Godin, M. Fromager, E. Cagniot, R. Moncorgé, and K. Aït-Ameur, “Baryscan: a sensitive and user-friendly alternative to Z scan for weak nonlinearities measurements,” Opt. Lett. 36, 1401–1403 (2011). [CrossRef]
  20. S.-H. Baik, S.-K. Park, C.-J. Kim, and B. Cha, “A center detection algorithm for Shack–Hartmann wavefront sensor,” Opt. Laser Technol. 39, 262–267 (2007). [CrossRef]
  21. C. S. Vikram and H. J. Caulfield, “Interference fringe analysis based on centroid detection,” Appl. Opt. 46, 5137–5141 (2007). [CrossRef]
  22. T. Godin, M. Fromager, E. Cagniot, and K. Aït-Ameur, “Mesureur de front d'onde à base de capteur continu,” French patent applicationFR13 53065 (2013)
  23. H. Gilles, B. Chéron, and J. Hamel, “Dispersive effects in optically pumped (2S13)He4 atomic vapor measured using a geometrical optics technique,” Opt. Commun. 190, 179–184 (2001) http://www.sciencedirect.com/science/article/pii/S0030401801010707 . [CrossRef]
  24. T. Godin, M. Fromager, E. Cagniot, F. Porée, T. Catunda, R. Moncorgé, and K. Aït-Ameur, “Transverse pseudo-nonlinear effects measured in solid-state laser materials using a sensitive time-resolved technique,” Appl. Phys. B 107, 733–740 (2012). [CrossRef]
  25. T. Kanai, A. Suda, S. Bohman, M. Kaku, S. Yamaguchi, and K. Midorikawa, “Pointing stabilization of a high-repetition-rate high-power femtosecond laser for intense few-cycle pulse generation,” Appl. Phys. Lett. 92, 061106 (2008). [CrossRef]
  26. G. Yoon, S. Pantanelli, and L. J. Nagy, “Large-dynamic-range Shack–Hartmann wavefront sensor for highly aberrated eyes,” J. Biomed. Opt. 11, 030502 (2006). [CrossRef]
  27. H. Shengyang, N. Yu, X. Fengjie, and J. Zongfu, “Modal wavefront reconstruction with Zernike polynomials and eigenfunctions of Laplacian,” Opt. Commun. 288, 7–12 (2013). [CrossRef]
  28. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  29. O. L. Antipov, O. N. Eremeykin, A. P. Savikin, V. A. Vorob’ev, D. V. Bredikhin, and M. S. Kuznetsov, “Electronic changes of refractive index in intensively pumped Nd:YAG laser crystals,” IEEE J. Quantum Electron. 39, 910–918 (2003). [CrossRef]
  30. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153 (2006). [CrossRef]
  31. G. Boudebs and K. Fedus, “Absolute measurement of the nonlinear refractive indices of reference materials,” J. Appl. Phys. 105, 103106 (2009). [CrossRef]
  32. D. P. Rhodes, G. P. T. Lancaster, J. Livesey, D. McGloin, J. Artl, and K. Dholakia, “Guiding a cold atomic beam along a co-propagating and oblique light guide,” Opt. Commun. 214, 247–254 (2002). [CrossRef]
  33. B. Dépret, P. Verkerk, and D. Hennequin, “Characterization and modeling of the hollow beam produced by a real conical lens,” Opt. Commun. 211, 31–38 (2002). [CrossRef]
  34. G. Popescu, Y. Park, W. Choi, R. Dasari, M. Feld, and K. Badizadegan, “Imaging red blood cell dynamics by quantitative phase microscopy,” Blood Cell. Mol. Dis. 41, 10–16 (2008). [CrossRef]
  35. F. V. Ignatovich and L. Novotny, “Real-time and background-free detection of nanoscale particles,” Phys. Rev. Lett. 96, 013901 (2006). [CrossRef]
  36. M. Brunel, H. Shen, S. Coetmellec, D. Lebrun, and K. Aït-Ameur, “Femtosecond digital in-line holography with the fractional Fourier transform: application to phase-contrast metrology,” Appl. Phys. B 106, 583–591 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited