OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 35 — Dec. 10, 2013
  • pp: 8451–8459

Influence of measurement noise on the determination of the radial profile of the photoelastic coefficient in step-index optical fibers

Sophie Acheroy, Patrick Merken, Heidi Ottevaere, Thomas Geernaert, Hugo Thienpont, and Francis Berghmans  »View Author Affiliations


Applied Optics, Vol. 52, Issue 35, pp. 8451-8459 (2013)
http://dx.doi.org/10.1364/AO.52.008451


View Full Text Article

Enhanced HTML    Acrobat PDF (1039 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We discuss a measurement method that aims to determine the radial distribution of the photoelastic constant C in an optical fiber. This method uses the measurement of the retardance profile of a transversely illuminated fiber as a function of applied tensile load and requires the computation of the inverse Abel transform of this retardance profile. We focus on the influence of the measurement error on the obtained values for C. The results suggest that C may not be constant across the fiber and that the mean absolute value of C is slightly larger for glass fibers than for bulk fused silica. This can, for example, influence the accuracy with which one is able to predict the response of optical fiber sensors used for measuring mechanical loads.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2310) Fiber optics and optical communications : Fiber optics

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 4, 2013
Manuscript Accepted: October 15, 2013
Published: December 2, 2013

Citation
Sophie Acheroy, Patrick Merken, Heidi Ottevaere, Thomas Geernaert, Hugo Thienpont, and Francis Berghmans, "Influence of measurement noise on the determination of the radial profile of the photoelastic coefficient in step-index optical fibers," Appl. Opt. 52, 8451-8459 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-35-8451


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. F. Doyle and J. W. Philips, Manual on Experimental Stress Analysis, 5th ed. (Society for Experimental Mechanics, 1989), pp. 136–149.
  2. G. L. Cloud, Optical Methods of Engineering Analysis (Cambridge University, 1998).
  3. E. Hecht, Optics (Addison Wesley, 2002).
  4. T. Geernaert, G. Luyckx, and E. Voet, “Transversal load sensing with fiber Bragg gratings in microstructured optical fibers,” IEEE Photon. Technol. Lett. 21, 6–8 (2009). [CrossRef]
  5. A. D. Kersey and M. A. Davis, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997). [CrossRef]
  6. K. Peeters, Polymer Optical Fibre Sensors: A Review (IOP, 2011).
  7. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  8. L. N. Glass Stress Summer School, “Photoelasticity of glass,” Tallinn, Germany, 2011.
  9. N. Lagakos and R. Mohr, “Stress optic coefficient and stress profile in optical fibers,” Appl. Opt. 20, 2309–2313 (1981). [CrossRef]
  10. A. J. Barlow and D. N. Payne, “The stress-optic effect in optical fibers,” IEEE J. Quantum Electron. 19, 834–839 (1983). [CrossRef]
  11. COMSOL, “COMSOL Multiphysics,” www.comsol.com/products/multiphysics .
  12. W. Primak, “Photoelastic constants of vitreous silica and its elastic coefficient of refractive index,” J. Appl. Phys. 30, 779–788 (1959). [CrossRef]
  13. A. Bertholds and B. Dändliker, “Determination of the individual strain-optic coefficients in single-mode optical fibers,” J. Lightwave Technol. 6, 17–20 (1988). [CrossRef]
  14. A. Bertholds and R. Dändliker, “Deformation of single-mode optical fibers under longitudinal stress,” J. Lightwave Technol. 5, 895–900 (1987). [CrossRef]
  15. P. L. Chu and T. Whitbread, “Measurement of stresses in optical fiber and preform,” Appl. Opt. 21, 4241–4245 (1982). [CrossRef]
  16. M. P. Varnham, S. B. Poole, and D. N. Payne, “Thermal stress measurements in optical-fibre preforms using preform-profiling techniques,” Electron. Lett. 20, 1034–1035 (1984). [CrossRef]
  17. D. J. Webb, K. Kali, W. Urbanzyck, and F. Berghmans, “Photonics skins for optical sensing, White Paper 2,” 2010, www.phosfos.eu .
  18. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling bu spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol. 28, 360–364 (2010). [CrossRef]
  19. A. D. Yablon, “New transverse techniques for characterizing high-power optical fibers,” Opt. Eng. 50, 111603 (2011). [CrossRef]
  20. J. Hecht, Understanding Fiber Optic (Prentice Hall, 2005).
  21. K. J. Gadvik, Optical Metrology, 3rd ed. (Wiley, 2002).
  22. M. Kalal and K. Nugent, “Abel inversion using fast Fourier transforms,” Appl. Opt. 27, 1956–1959 (1988). [CrossRef]
  23. K. Tatekura, “Determination of the index profile of optical fibers from transverse interferograms using Fourier theory,” Appl. Opt. 22, 460–463 (1983). [CrossRef]
  24. M. R. Hutsel and C. Montarou, “Algorithm performance in the determination of the refractive-index profile of optical fibers,” Appl. Opt. 47, 760–767 (2008). [CrossRef]
  25. A. Kuske and G. Robertson, Photoelastic Stress Analysis (Wiley, 1974).
  26. H. Poritsky, “Analysis of thermal stresses in sealed cylinders and the effect of viscous flow during anneal,” Physics 5, 406–411 (1934). [CrossRef]
  27. C. C. Montarou, “Two-wave-plate compensator method for full-field retardation measurements,” Appl. Opt. 45, 271–280 (2006). [CrossRef]
  28. C. C. Montarou, “Residual stress profiles in optical fibers determined by the two-wave-plate-compensator method,” Opt. Commun. 265, 29–32 (2006). [CrossRef]
  29. Thorlabs, “Single mode fiber: 633/680  nm,” http://www.thorlabs.de/Thorcat/12600/SM600-SpecSheet.pdf .
  30. W. K. Fester and M. W. Davidson, “The de Sénarmont compensator,” http://www.olympusmicro.com/primer/techniques/polarized/desenarmontcompensator.html .
  31. P. A. Vicharelli, “Iterative method for computing the inverse Abel transform,” Appl. Phys. Lett. 50, 557–559 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited