OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 35 — Dec. 10, 2013
  • pp: 8540–8548

Eye-safe compact Raman light detection and ranging temperature profiler

Guangkun Li, Geary Schwemmer, Coorg Prasad, I. H. Hwang, Jie Lei, Sangwoo Lee, Narasimha S. Prasad, and Russell Philbrick  »View Author Affiliations


Applied Optics, Vol. 52, Issue 35, pp. 8540-8548 (2013)
http://dx.doi.org/10.1364/AO.52.008540


View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The vertical profile of atmospheric temperature is a principal state variable to study atmospheric stability. A lidar system, constructed using a 355 nm Nd:YAG laser transmitter, measures the temperature profile using the rotational Raman technique. In comparison with traditional Raman lidar, the major innovations are the use of a low peak power and high repetition rate laser to achieve eye-safe operation in a compact reliable instrument and the use of an angle tuning filter to select operating wavelengths. We demonstrate the capability of both nighttime and daytime measurements as a step toward a future stand-alone capability for routine measurements of important meteorological properties in the lower atmosphere.

© 2013 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: August 20, 2013
Revised Manuscript: November 6, 2013
Manuscript Accepted: November 9, 2013
Published: December 6, 2013

Citation
Guangkun Li, Geary Schwemmer, Coorg Prasad, I. H. Hwang, Jie Lei, Sangwoo Lee, Narasimha S. Prasad, and Russell Philbrick, "Eye-safe compact Raman light detection and ranging temperature profiler," Appl. Opt. 52, 8540-8548 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-35-8540


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. I. Green, “Wing tip vortices,” in Fluid Vortices: Fluid Mechanics and Its Applications, S. I. Green, ed. (Springer, 1995), pp. 427–470.
  2. J. N. Hallock, G. C. Greene, and D. C. Burnham, “Wake vortex research: a retrospective look,” Air Traffic Control Q. 6, 161–178 (1998).
  3. J. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972). [CrossRef]
  4. H. Inaba, “Detection of atoms and molecules by Raman scattering and resonance fluorescence” in Laser Monitoring of the Atmosphere, Volume 14 of Topics in Applied Physics, E. D. Hinkley, ed. (Springer, 1976), pp. 153–236.
  5. J. A. Cooney, “Uses of Raman scattering for remote sensing of atmospheric properties of meteorological significance,” Opt. Eng. 22, 292–301 (1983). [CrossRef]
  6. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983). [CrossRef]
  7. M. L. Chanin, A. Hauchecorne, and D. Nedeljkovic, “Temperature measurement by rotational Raman lidar,” Proc. SPIE 1714, 242–250 (1992). [CrossRef]
  8. D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure the atmospheric temperature from the ground to 30  km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993). [CrossRef]
  9. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993). [CrossRef]
  10. C. R. Philbrick, “Raman lidar measurements of atmospheric properties. Atmospheric propagation and remote sensing III,” Proc. SPIE 2222, 922–931 (1994). [CrossRef]
  11. P. A. T. Haris and C. R. Philbrick, “Rotational Raman lidar for temperature measurements in the troposphere,” in Proceedings of the IEEE Topical Symposium on Combined Optical-Microwave Earth and Atmosphere Sensing, ID TW.7 (IEEE, 1995), pp. 141–144.
  12. F. Balsiger, P. A. T. Haris, and C. R. Philbrick, “Lower tropospheric temperature measurements using a rotational Raman lidar,” Proc. SPIE 2832, 53–60 (1996). [CrossRef]
  13. I. Balin, I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van Den Bergh, “Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational pure-rotational Raman lidar,” Appl. Phys. B 79, 775–782 (2004). [CrossRef]
  14. A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 273–305.
  15. C. R. Philbrick, “Raman lidar characterization of the meteorological, electromagnetic and electro-optical environment,” Proc. SPIE 5887, 58870 (2005). [CrossRef]
  16. M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008). [CrossRef]
  17. J. Reichardt, U. Wandinger, V. Klein, I. Mattis, B. Hilber, and R. Begbie, “RAMSES: German meteorological service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements,” Appl. Opt. 51, 8111–8131 (2012). [CrossRef]
  18. R. K. Newsom, D. D. Turner, and J. E. M. Goldsmith, “Long-term evaluation of temperature profiles measured by an operational Raman lidar,” J. Atmos. Ocean. Technol. 30, 1616–1634 (2013). [CrossRef]
  19. H. S. Lee, I. H. Hwang, and C. R. Prasad, “Portable digital lidar system,” U.S. patent6,593,582 B2 (15July2003).
  20. G. Li and C. R. Philbrick, “Lidar measurements of airborne particulate matter,” Proc. SPIE 4893, 94–104 (2003). [CrossRef]
  21. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981). [CrossRef]
  22. A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. L. Marsha, J. Fox, S. M. Adler-Golden, J. H. Chetwynd, M. L. Hoke, R. B. Lockwood, T. W. Cooley, and J. A. Gardner, “MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options,” Proc. SPIE 5655, 88–95 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited