OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 35 — Dec. 10, 2013
  • pp: 8554–8561

Third-order aberration design of optical systems optimized for specific object distance

Antonín Mikš and Jiří Novák  »View Author Affiliations


Applied Optics, Vol. 52, Issue 35, pp. 8554-8561 (2013)
http://dx.doi.org/10.1364/AO.52.008554


View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This work deals with an analysis of an influence of the third-order aberration design of an optical system for a specific position of the object on the diameter of the circle of confusion, the centroid of the spot diagram, and the position of the optimum image. Explicit analytical formulas are derived for the calculation of fundamental third-order aberration coefficients for an arbitrary value of the transverse magnification of the optical system. Analytical formulas are also derived for the calculation of the third-order aberrations of an optical system composed of several components.

© 2013 Optical Society of America

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(080.3620) Geometric optics : Lens system design
(220.1000) Optical design and fabrication : Aberration compensation
(220.3620) Optical design and fabrication : Lens system design
(220.3630) Optical design and fabrication : Lenses
(080.2468) Geometric optics : First-order optics

ToC Category:
Geometric Optics

History
Original Manuscript: October 16, 2013
Manuscript Accepted: November 8, 2013
Published: December 6, 2013

Citation
Antonín Mikš and Jiří Novák, "Third-order aberration design of optical systems optimized for specific object distance," Appl. Opt. 52, 8554-8561 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-35-8554


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  2. M. M. Rusinov, Technical Optics (Mashinostroenie, 1979).
  3. H. Gross, H. Zügge, M. Peschka, and F. Blechinger, Handbook of Optical Systems, Volume 3: Aberration Theory and Correction of Optical Systems (Wiley-VCH, 2006).
  4. A. Miks, Applied Optics (Czech Technical University, 2009).
  5. W. T. Welford, Aberrations of the Symmetrical Optical Systems (Academic, 1974).
  6. H. A. Buchdahl, An Introduction to Hamiltonian Optics (Cambridge University, 1970).
  7. M. Herzberger, Strahlenoptik (Springer, 1931).
  8. M. Herzberger, “Theory of image errors of the fifth order in rotationally symmetrical systems I,” J. Opt. Soc. Am. 29, 395 (1939). [CrossRef]
  9. M. Herzberger, Modern Geometrical Optics (Interscience, 1958).
  10. C. G. Wynne, “Primary aberrations and conjugate change,” Proc. Phys. Soc. 65B, 429–437 (1952). [CrossRef]
  11. A. Walther, “Irreducible aberrations of a lens used for a range of magnifications,” J. Opt. Soc. Am. A 6, 415–422 (1989). [CrossRef]
  12. A. Miks and J. Novak, “Estimation of accuracy of optical measuring systems with respect to object distance,” Opt. Express 19, 14300–14314 (2011). [CrossRef]
  13. A. Miks and J. Novak, “Dependence of camera lens induced radial distortion and circle of confusion on object position,” Opt. Laser Technol. 44, 1043–1049 (2012). [CrossRef]
  14. J. B. Develis, “Comparison of methods for image evaluation,” J. Opt. Soc. Am. 55, 165–173 (1965). [CrossRef]
  15. R. Leach, Optical Measurement of Surface Topography (Springer, 2011).
  16. A. Miks, J. Novak, and P. Novak, “Analysis of imaging for laser triangulation sensors under Scheimpflug rule,” Opt. Express 21, 18225–18235 (2013). [CrossRef]
  17. D. Argentieri, Ottica industriale (Hoepli, 1942).
  18. H. Chretien, Calcul des Combinaisons Optiques (Masson, 1980).
  19. M. Berek, Grundlagen der Praktischen Optik (Walter de Gruyter & Co., 1970).
  20. M. I. Khan, “Cemented triplets: a method for rapid design,” Opt. Acta 31, 873–883 (1984). [CrossRef]
  21. C. H. Chen and S. G. Shiue, “Method of solving a triplet comprising a singlet and a cemented doublet with given primary aberrations,” J. Mod. Opt. 44, 1279–1292 (1997). [CrossRef]
  22. A. Szulc, “Improved solution for the cemented doublet,” Appl. Opt. 35, 3548–3558 (1996). [CrossRef]
  23. M. H. Sussman, “Cemented aplanatic doublets,” J. Opt. Soc. Am. 52, 1185–1186 (1962). [CrossRef]
  24. S. Banerjee and L. Hazra, “Experiments with a genetic algorithm for structural design of cemented doublets with prespecified aberration targets,” Appl. Opt. 40, 6265–6273 (2001). [CrossRef]
  25. M. I. Khan and J. Macdonald, “Cemented doublets, a method for rapid design,” Opt. Acta 29, 807–822 (1982). [CrossRef]
  26. A. Miks and J. Novak, “Design of a double-sided telecentric zoom lens,” Appl. Opt. 51, 5928–5935 (2012). [CrossRef]
  27. A. Miks, “Modification of the formulas for third-order aberration coefficients,” J. Opt. Soc. Am. A 19, 1867–1871 (2002). [CrossRef]
  28. A. Miks, J. Novak, and P. Novak, “Method of zoom lens design,” Appl. Opt. 47, 6088–6098 (2008). [CrossRef]
  29. A. Miks and J. Novak, “Third-order aberration coefficients of a thick lens,” Appl. Opt. 51, 7883–7886 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited