OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 35 — Dec. 10, 2013
  • pp: 8572–8575

Characterization of a refractive linear axicon with distant depth of field and no central blocking

Brahim Chebbi, Ilya Golub, and Pavel Breygin  »View Author Affiliations


Applied Optics, Vol. 52, Issue 35, pp. 8572-8575 (2013)
http://dx.doi.org/10.1364/AO.52.008572


View Full Text Article

Enhanced HTML    Acrobat PDF (444 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the manufacturing and characterization of a refractive linear axicon producing a linearly increasing axial intensity Bessel-type beam over a predetermined range starting away from the axicon and without central blocking when illuminated by a plane wave. This is in contrast to a classical axicon that generates a diffraction-free beam starting from the axicon tip and extending to a range limited by the input beam aperture. The measured characteristics of the beam produced by the linear axicon, including its intensity distribution and spot size, are in good agreement with the theoretical predictions. Together with logarithmic axicon and exicon, this is another element of the axicon family that can generate a prescribed intensity distribution over a chosen range/depth of field.

© 2013 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.0230) Optical devices : Optical devices
(260.0260) Physical optics : Physical optics
(070.3185) Fourier optics and signal processing : Invariant optical fields
(070.7345) Fourier optics and signal processing : Wave propagation

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: September 17, 2013
Revised Manuscript: November 10, 2013
Manuscript Accepted: November 15, 2013
Published: December 9, 2013

Citation
Brahim Chebbi, Ilya Golub, and Pavel Breygin, "Characterization of a refractive linear axicon with distant depth of field and no central blocking," Appl. Opt. 52, 8572-8575 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-35-8572


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Saikaley, B. Chebbi, and I. Golub, “Imaging properties of three refractive axicons,” Appl. Opt. 52, 6910–6918 (2013). [CrossRef]
  2. J. H. Mcleod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954). [CrossRef]
  3. Z. Jaroszewicz, A. Burvall, and T. Friberg, “Axicon—the most important optical element,” Opt. Photon. News 16(4), 34–39 (2005). [CrossRef]
  4. B. Chebbi, S. Minko, N. Al-Akwaa, and I. Golub, “Remote control of extended depth of field focusing,” Opt. Commun. 283, 1678–1683 (2010). [CrossRef]
  5. J. Sochacki, A. Kołodziejczyk, Z. Jaroszewicz, and S. Bará, “Nonparaxial design of generalized axicons,” Appl. Opt. 31, 5326–5330 (1992). [CrossRef]
  6. A. T. Friberg, “Stationary-phase analysis of generalized axicons,” J. Opt. Soc. Am. A 13, 743–750 (1996).
  7. D. Brousseau, J. Drapeau, M. Piché, and E. Borra, “Generation of Bessel beams using a magnetic liquid deformable mirror,” Appl. Opt. 50, 4005–4010 (2011). [CrossRef]
  8. S. K. Tiwari, S. R. Mishra, S. P. Ram, and H. S. Rawat, “Generation of a Bessel beam of variable spot size,” Appl. Opt. 51, 3718–3725 (2012). [CrossRef]
  9. Z. Lu, H. Liu, R. Wang, F. Li, and Y. Liu, “Diffractive axicons fabricated by laser direct writer on curved surface,” J. Opt. A 9, 160–164 (2007).
  10. G. Mikuła, A. Kolodziejczyk, M. Makowski, C. Prokopowicz, and M. Sypek, “Diffractive elements for imaging with extended depth of focus,” Opt. Eng. 44, 058001 (2005). [CrossRef]
  11. K. Gourley, I. Golub, and B. Chebbi, “Demonstration of a Fresnel axicon,” Appl. Opt. 50, 303–306 (2011). [CrossRef]
  12. I. Golub, B. Chebbi, D. Shaw, and D. Nowacki, “Characterization of a refractive logarithmic axicon,”Opt. Lett. 35, 2828–2830 (2010). [CrossRef]
  13. J. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  14. Z. Cao, K. Wang, and Q. Wu, “Logarithmic axicon characterized by scanning optical probe system,” Opt. Lett. 38, 1603–1605 (2013). [CrossRef]
  15. J. Sochacki, Z. Jaroszewicz, L. R. Staroński, and A. Kołodziejczyk, “Annular-aperture logarithmic axicon,” J. Opt. Soc. Am. A 10, 1765–1768 (1993).
  16. I. Golub, T. Mirtchev, J. Nuttall, and D. Shaw, “The taming of absorption: generating a constant intensity beam in a lossy medium,” Opt. Lett. 37, 2556–2558 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited