OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 36 — Dec. 20, 2013
  • pp: 8670–8675

Terahertz lens made out of natural stone

Daehoon Han, Kanghee Lee, Jongseok Lim, Sei Sun Hong, Young Kie Kim, and Jaewook Ahn  »View Author Affiliations

Applied Optics, Vol. 52, Issue 36, pp. 8670-8675 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (670 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Terahertz (THz) time-domain spectroscopy probes the optical properties of naturally occurring solid aggregates of minerals, or stones, in the THz frequency range. Refractive index and extinction coefficient measurement reveals that most natural stones, including mudstone, sandstone, granite, tuff, gneiss, diorite, slate, marble, and dolomite, are fairly transparent for THz frequency waves. Dolomite in particular exhibits a nearly uniform refractive index of 2.7 over the broad frequency range from 0.1 to 1 THz. The high index of refraction allows flexibility in lens designing with a shorter accessible focal length or a thinner lens with a given focal length. Good agreement between the experiment and calculation for the THz beam profile confirms that dolomite has high homogeneity as a lens material, suggesting the possibility of using natural stones for THz optical elements.

© 2013 Optical Society of America

OCIS Codes
(080.3630) Geometric optics : Lenses
(220.4610) Optical design and fabrication : Optical fabrication
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: October 10, 2013
Revised Manuscript: November 20, 2013
Manuscript Accepted: November 20, 2013
Published: December 13, 2013

Daehoon Han, Kanghee Lee, Jongseok Lim, Sei Sun Hong, Young Kie Kim, and Jaewook Ahn, "Terahertz lens made out of natural stone," Appl. Opt. 52, 8670-8675 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007). [CrossRef]
  3. Y.-S. Jin, G.-J. Kim, and S.-G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517 (2006).
  4. J. Chen, Y. Chen, H. Zhao, G. J. Bastiaans, and X.-C. Zhang, “Absorption coefficients of selected explosives and related compounds in the range of 0.1–2.8  THz,” Opt. Express 15, 12060–12067 (2007). [CrossRef]
  5. Y. Kim, J. Ahn, B. G. Kim, and D.-S. Yee, “Terahertz birefringence in zinc oxide,” Jpn. J. Appl. Phys. 50, 030203 (2011). [CrossRef]
  6. M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy: a new tool for the study of glasses in the far infrared,” J. Non-Cryst. Solids 351, 3341–3346 (2005). [CrossRef]
  7. D. S. Venables and C. A. Schmuttenmaer, “Far-infrared spectra and associated dynamics in acetonitrile-water mixtures measured with femtosecond THz pulse spectroscopy,” J. Chem. Phys. 108, 4935–4944 (1998). [CrossRef]
  8. K. J. Tielrooij, N. Garcia-Araez, M. Bonn, and H. J. Bakker, “Cooperativity in ion hydration,” Science 328, 1006–1009 (2010). [CrossRef]
  9. J.-H. Son, “Terahertz electromagnetic interactions with biological matter and their applications,” J. Appl. Phys. 105, 102033 (2009). [CrossRef]
  10. S. Wietzke, C. Jansen, T. Jung, M. Reuter, B. Baudrit, M. Bastian, S. Chatterjee, and M. Koch, “Terahertz time-domain spectroscopy as a tool to monitor the glass transition in polymers,” Opt. Express 17, 19006–19014 (2009). [CrossRef]
  11. N. Krumbholz, T. Hochreina, N. Viewega, T. Hasek, K. Kretschmer, M. Bastian, M. Mikulics, and M. Koch, “Monitoring polymeric compounding processes inline with THz time-domain spectroscopy,” Polym. Test. 28, 30–35 (2009). [CrossRef]
  12. S. Gorenflo, “A comprehensive study of macromolecules in composites using broadband terahertz spectroscopy,” Ph.D. thesis (University of Freiburg, 2006).
  13. B. M. Fischer, “Broadband THz time-domain spectroscopy of biomolecules: a comprehensive study of the dielectric properties of biomaterials in the far-infrared,” Ph.D. thesis (University of Freiburg, 2005).
  14. P. D. Cunningham, N. N. Valdes, F. A. Vallejo, M. L. Hayden, B. Polishak, X.-H. Zhou, J. Luo, A. K.-Y. Jen, J. C. Williams, and R. J. Twieg, “Broadband terahertz characterization of the refractive index and absorption of some important polymeric and organic electro-optic materials,” J. Appl. Phys. 109, 043505 (2011). [CrossRef]
  15. P. E. Powers, R. A. Alkuwari, J. W. Haus, K. Suizu, and H. Ito, “Terahertz generation with tandem seeded optical parametric generators,” Opt. Lett. 30, 640–642 (2005). [CrossRef]
  16. D. Grbovic and G. Karunasiri, “Fabrication of bi-material MEMS detector arrays for THz imaging,” Proc. SPIE 7311, 731108 (2009). [CrossRef]
  17. B. Scherger, M. Scheller, C. Jansen, M. Koch, and K. Wiesauer, “Terahertz lenses made by compression molding of micropowders,” Appl. Opt. 50, 2256–2262 (2011). [CrossRef]
  18. M. Wichmann, A. S. Mondol, N. Kocic, S. Lippert, T. Probst, M. Schwerdtfeger, S. Schumann, T. Hochrein, P. Heidemeyer, M. Bastian, G. Bastian, and M. Koch, “Terahertz plastic compound lenses,” Appl. Opt. 52, 4186–4191 (2013). [CrossRef]
  19. A. Siemion, A. Siemion, M. Makowski, M. Sypek, E. Hérault, F. Garet, and J.-L. Coutaz, “Off-axis metallic diffractive lens for terahertz beams,” Opt. Lett. 36, 1960–1962 (2011). [CrossRef]
  20. A. Siemion, A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwiński, F. Garet, J.-L. Coutaz, and M. Sypek, “Diffractive paper lens for terahertz optics,” Opt. Lett. 37, 4320–4322 (2012). [CrossRef]
  21. B. Scherger, C. Jördens, and M. Koch, “Variable-focus terahertz lens,” Opt. Express 19, 4528–4535 (2011). [CrossRef]
  22. M. Wichmann, B. Scherger, S. Schumann, S. Lippert, M. Scheller, S. F. Busch, C. Jansen, and M. Koch, “Terahertz Brewster lenses,” Opt. Express 19, 25151–25160 (2011). [CrossRef]
  23. M. Janek, I. Bugár, D. Lorenc, V. Szöcs, D. Velič, and D. Chorvát, “Terahertz time-domain spectroscopy of selected layered silicates,” Clays Clay Miner. 57, 416–424 (2009). [CrossRef]
  24. M. Mizuno, K. Fukunaga, S. Saito, and I. Hosako, “Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy,” J. Eur. Opt. Soc. 4, 09044 (2009). [CrossRef]
  25. M. Schwerdtfeger, E. Castro-Camus, K. Krügener, W. Viöl, and M. Koch, “Beating the wavelength limit: three-dimensional imaging of buried subwavelength fractures in sculpture and construction materials by terahertz time-domain reflection spectroscopy,” Appl. Opt. 52, 375–380 (2013). [CrossRef]
  26. A. Dreyhaupt, S. Winner, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005). [CrossRef]
  27. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16, 1204–1212 (1999). [CrossRef]
  28. P. C. M. Planken, H.-K. Nienhuys, H. J. Bakker, and T. Wenckebach, “Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am. B 18, 313–317 (2001). [CrossRef]
  29. Y. Kim, D.-S. Yee, M. Yi, and J. Ahn, “High-speed high-resolution terahertz spectrometers,” J. Korean Phys. Soc. 56, 255–261 (2010). [CrossRef]
  30. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995). [CrossRef]
  31. G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Dover Publications, 1989).
  32. W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Material parameter extraction for terahertz time-domain spectroscopy using fixed-point iteration,” Proc. SPIE 5840, 221–231 (2005). [CrossRef]
  33. W. Withayachumnankul, B. Ferguson, T. Rainsford, S. P. Mickan, and D. Abbott, “Simple material parameter estimation via terahertz time-domain spectroscopy,” Electron. Lett. 41, 800–801 (2005). [CrossRef]
  34. A. C. Tennissen, Nature of Earth Materials (Prentice Hall, 1974).
  35. B. K. Johnson, Optics and Optical Instruments: An Introduction with Special Reference to Practical Applications (Dover Publications, 1960).
  36. E. Hecht, Optics, 4th ed. (Addison Wesley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited