OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 36 — Dec. 20, 2013
  • pp: 8685–8705

Benthic effects on the polarization of light in shallow waters

Alexander A. Gilerson, Jan Stepinski, Amir I. Ibrahim, Yu You, James M. Sullivan, Michael S. Twardowski, Heidi M. Dierssen, Brandon Russell, Molly E. Cummings, Parrish Brady, Samir A. Ahmed, and George W. Kattawar  »View Author Affiliations

Applied Optics, Vol. 52, Issue 36, pp. 8685-8705 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (3174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of the upwelling polarized radiance in relatively shallow waters of varying depths and benthic conditions are compared to simulations, revealing the depolarizing nature of the seafloor. The simulations, executed with the software package RayXP, are solutions to the vector radiative transfer equation, which depends on the incident light field and three types of parameters: inherent optical properties, the scattering matrix, and the benthic reflectance. These were measured directly or calculated from measurements with additional assumptions. Specifically, the Lambertian model used to simulate benthic reflectances is something of a simplification of reality, but the bottoms used in this study are found to be crucial for accurate simulations of polarization. Comparisons of simulations with and without bottom contributions show that only the former corroborate measurements of the Stokes components and the degree of linear polarization (DoLP) collected by the polarimeter developed at the City College of New York. Because this polarimeter is multiangular and hyperspectral, errors can be computed point-wise over a large range of scattering angles and wavelengths. Trends also become apparent. DoLP is highly sensitive to the benthic reflectance and to the incident wavelength, peaking in the red band, but the angle of linear polarization is almost spectrally constant and independent of the bottom. These results can thus facilitate the detection of benthic materials as well as future studies of camouflage by benthic biota; to hide underwater successfully, animals must reflect light just as depolarized as that reflected by benthic materials.

© 2013 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(300.6550) Spectroscopy : Spectroscopy, visible
(010.4458) Atmospheric and oceanic optics : Oceanic scattering
(290.5855) Scattering : Scattering, polarization
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: July 31, 2013
Revised Manuscript: November 7, 2013
Manuscript Accepted: November 16, 2013
Published: December 13, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Alexander A. Gilerson, Jan Stepinski, Amir I. Ibrahim, Yu You, James M. Sullivan, Michael S. Twardowski, Heidi M. Dierssen, Brandon Russell, Molly E. Cummings, Parrish Brady, Samir A. Ahmed, and George W. Kattawar, "Benthic effects on the polarization of light in shallow waters," Appl. Opt. 52, 8685-8705 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ivanoff and T. H. Waterman, “Elliptical polarisation of submarine illumination,” J. Mar. Res. 16, 255–282 (1958).
  2. V. Timofeeva, “On study of polarization characteristics of light field in turbid media,” Dokl Akad Nauk SSSR 140, 361–363 (1961).
  3. T. H. Waterman, “Polarization patterns in submarine illumination,” Science 120, 927–932 (1954). [CrossRef]
  4. A. Ivanoff and T. H. Waterman, “Factors, mainly depth and wavelength, affecting the degree of underwater light polarization,” J. Mar. Res. 16, 283–307 (1958).
  5. R. Schwind, “Daphnia pulex swims towards the most strongly polarized light—a response that leads to ‘shore flight’,” J. Exper. Bio. 202, 3631–3635 (1999).
  6. T. W. Cronin and N. Shashar, “The linearly polarized light field in clear, tropical marine waters: spatial and temporal variation of light intensity, degree of polarization and e-vector angle,” J. Exp. Biol. 204, 2461–2467 (2001).
  7. N. Shashar, S. Sabbah, and T. W. Cronin, “Transmission of linearly polarized light in seawater: implications for polarization signaling,” J. Exp. Biol. 207, 3619–3628 (2004). [CrossRef]
  8. H. M. Dierssen, R. C. Zimmerman, R. A. Leathers, T. V. Downes, and C. O. Davis, “Ocean color remote sensing of sea grass and bathymetry in the Bahamas Banks by high-resolution airborne imagery,” Limnol. Oceanogr. 48, 444–455 (2003). [CrossRef]
  9. C. D. Mobley, H. Zhang, and K. J. Voss, “Effects of optically shallow bottoms on upwelling radiances: bidirectional reflectance distribution function effects,” Limnol. Oceanogr. 48, 337–345 (2003). [CrossRef]
  10. R. C. Zimmerman, “A bio-optical model of irradiance distribution and photosynthesis in sea grass canopies,” Limnol. Oceanogr. 48, 568–585 (2003). [CrossRef]
  11. K. J. Voss, C. D. Mobley, L. K. Sundman, J. E. Ivey, and C. H. Mazel, “The spectral upwelling radiance distribution in optically shallow waters,” Limnol. Oceanogr. 48, 364–373 (2003). [CrossRef]
  12. H. Zhang and K. J. Voss, “Bidirectional reflectance and polarization measurements on packed surfaces of benthic sediments and spherical particles,” Opt. Express 17, 5217–5231 (2009). [CrossRef]
  13. M. Mcpherson, V. J. Hill, R. C. Zimmerman, and H. M. Dierssen, “The optical properties of Greater Florida Bay: implications for sea grass abundance,” Estuaries Coasts 34, 1150–1160 (2011).
  14. C. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power-law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028 (2010). [CrossRef]
  15. C. H. Mazel, “Diver-operated instrument for in situ measurement of spectral fluorescence and reflectance of benthic marine organisms and substrates,” Opt. Eng. 36, 2612–2617 (1997). [CrossRef]
  16. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1–24.
  17. J. E. Hansen and L. D. Travis, “Light scattering in planetary atmospheres,” Space Sci. Rev. 16, 527–610 (1974). [CrossRef]
  18. H. C. Van de Hulst, Light Scattering by Small Particles (Dover Publications, 1981).
  19. Y. You, A. Tonizzo, A. A. Gilerson, M. E. Cummings, P. Brady, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, S. A. Ahmed, and G. W. Kattawar, “Measurements and simulations of polarization states of underwater light in clear oceanic waters,” Appl. Opt. 50, 4873–4893 (2011). [CrossRef]
  20. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009). [CrossRef]
  21. M. Twardowski, X. Zhang, S. Vagle, J. Sullivan, S. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012). [CrossRef]
  22. A. Tonizzo, J. Zhou, A. Gilerson, M. S. Twardowski, D. J. Gray, R. A. Arnone, B. M. Gross, F. Moshary, and S. A. Ahmed, “Polarized light in coastal waters: hyperspectral and multiangular analysis,” Opt. Express 17, 5666–5682 (2009). [CrossRef]
  23. A. Tonizzo, A. Gilerson, T. Harmel, A. Ibrahim, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, “Estimating particle composition and size distribution from polarized water-leaving radiance,” Appl. Opt. 50, 5047–5058 (2011). [CrossRef]
  24. E. P. Zege, L. L. Katsev, and I. N. Polonsky, “Multicomponent approach to light propagation in clouds and mists,” Appl. Opt. 32, 2803–2812 (1993). [CrossRef]
  25. H. H. Tynes, G. W. Kattawar, E. P. Zege, I. L. Katsev, A. S. Prikhach, and L. I. Chaikovskaya, “Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations,” Appl. Opt. 40, 400–412 (2001). [CrossRef]
  26. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700  nm) of pure water. 2. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  27. G. W. Kattawar, G. N. Plass, and S. J. Hitzfelder, “Multiple scattered radiation emerging from Rayleigh and continental haze layers. 1. Radiance, polarization, and neutral points,” Appl. Opt. 15, 632–647 (1976). [CrossRef]
  28. G. Zibordi, F. Mélin, S. B. Hooker, D. D’Alimonte, and B. Holben, “An autonomous above-water system for the validation of ocean color radiance data,” IEEE Trans. Geosci. Remote Sens. 42, 401–415 (2004). [CrossRef]
  29. S. Chandrasekhar, Radiative Transfer (Dover Books on Physics, 1960).
  30. J. T. Adams, E. Aas, N. K. Hojerslev, and B. Lundgren, “Comparison of radiance and polarization values observed in the Mediterranean Sea and simulated in a Monte Carlo model,” Appl. Opt. 41, 2724–2733 (2002). [CrossRef]
  31. C. D. Mobley and L. K. Sundman, “Effects of optically shallow bottoms on upwelling radiances: inhomogeneous and sloping bottoms,” Limnol. Oceanogr. 48, 329–336 (2003). [CrossRef]
  32. J. Hedley and S. Enrıquez, “Optical properties of canopies of the tropical sea grass Thalassia testudinum estimated by a three-dimensional radiative transfer model,” Limnol. Oceanogr. 55, 1537–1550 (2010). [CrossRef]
  33. M. P. Lesser and C. D. Mobley, “Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery,” Coral Reefs 26, 819–829 (2007). [CrossRef]
  34. C. D. Mobley, “HydroLight users’ guide”.
  35. H. M. Dierssen, R. C. Zimmerman, D. Burdige, and L. Drake, “Benthic ecology from space: optics and net primary production in sea grass and benthic algae across the Great Bahama Bank,” Mar. Ecol. Prog. Ser. 411, 1–15 (2010). [CrossRef]
  36. E. J. Hochberg and M. J. Atkinson, “Spectral discrimination of coral reef benthic communities,” Coral Reefs 19, 164–171 (2000). [CrossRef]
  37. A. Ibrahim, A. Gilerson, T. Harmel, A. Tonizzo, J. Chowdhary, and S. Ahmed, “The relationship between upwelling underwater polarization and attenuation/absorption ratio,” Opt. Express 20, 25662–25680 (2012). [CrossRef]
  38. P. C. Brady, K. A. Travis, T. Maginnis, and M. E. Cummings, “Polaro-cryptic mirror of the lookdown as a biological model for open ocean camouflage,” Proc. Natl. Acad. Sci. USA 110, 9764–9769 (2013). [CrossRef]
  39. T.-H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, and J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Current Biology 18, 429–434 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited