Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Benthic effects on the polarization of light in shallow waters

Not Accessible

Your library or personal account may give you access

Abstract

Measurements of the upwelling polarized radiance in relatively shallow waters of varying depths and benthic conditions are compared to simulations, revealing the depolarizing nature of the seafloor. The simulations, executed with the software package RayXP, are solutions to the vector radiative transfer equation, which depends on the incident light field and three types of parameters: inherent optical properties, the scattering matrix, and the benthic reflectance. These were measured directly or calculated from measurements with additional assumptions. Specifically, the Lambertian model used to simulate benthic reflectances is something of a simplification of reality, but the bottoms used in this study are found to be crucial for accurate simulations of polarization. Comparisons of simulations with and without bottom contributions show that only the former corroborate measurements of the Stokes components and the degree of linear polarization (DoLP) collected by the polarimeter developed at the City College of New York. Because this polarimeter is multiangular and hyperspectral, errors can be computed point-wise over a large range of scattering angles and wavelengths. Trends also become apparent. DoLP is highly sensitive to the benthic reflectance and to the incident wavelength, peaking in the red band, but the angle of linear polarization is almost spectrally constant and independent of the bottom. These results can thus facilitate the detection of benthic materials as well as future studies of camouflage by benthic biota; to hide underwater successfully, animals must reflect light just as depolarized as that reflected by benthic materials.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Measurements and simulations of polarization states of underwater light in clear oceanic waters

Yu You, Alberto Tonizzo, Alexander A. Gilerson, Molly E. Cummings, Parrish Brady, James M. Sullivan, Michael S. Twardowski, Heidi M. Dierssen, Samir A. Ahmed, and George W. Kattawar
Appl. Opt. 50(24) 4873-4893 (2011)

Sensitivity study on the contribution of scattering by randomly oriented nonspherical hydrosols to linear polarization in clear to semi-turbid shallow waters

Masada Tzabari, Wushao Lin, Amit Lerner, David Iluz, and Carynelisa Haspel
Appl. Opt. 58(26) 7258-7279 (2019)

Model for deriving benthic irradiance in the Great Barrier Reef from MODIS satellite imagery

Marites M. Magno-Canto, Lachlan I. W. McKinna, Barbara J. Robson, and Katharina E. Fabricius
Opt. Express 27(20) A1350-A1371 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (27)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved