OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 36 — Dec. 20, 2013
  • pp: 8809–8816

Plasmon focusing in short gold sphere nanochains for surface-enhanced Raman scattering

Pascal Delange, Ya-Lun Ho, and Jean-Jacques Delaunay  »View Author Affiliations

Applied Optics, Vol. 52, Issue 36, pp. 8809-8816 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1081 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Power-flow focusing in metal nanostructures is attracting growing attention to design efficient and tunable substrates for surface-enhanced Raman spectroscopy (SERS), and to propose a more reliable alternative to random surfaces for single-molecule sensing. In this paper, finite-difference time-domain simulations were used to explore the near-field amplification features of short chains of gold (Au) nanospheres. Short chains of gold spheres were found to induce stronger field enhancements than infinite chains due to a more efficient trapping and focusing of the incident energy. In addition, interaction with a suitably tuned SiO2/Au double-layer substrate was demonstrated to widen the resonance’s bandwidth, meeting another practical need for SERS.

© 2013 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles
(350.4990) Other areas of optics : Particles
(050.4865) Diffraction and gratings : Optical vortices
(250.5403) Optoelectronics : Plasmonics
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: September 6, 2013
Revised Manuscript: November 18, 2013
Manuscript Accepted: November 26, 2013
Published: December 17, 2013

Virtual Issues
Vol. 9, Iss. 2 Virtual Journal for Biomedical Optics

Pascal Delange, Ya-Lun Ho, and Jean-Jacques Delaunay, "Plasmon focusing in short gold sphere nanochains for surface-enhanced Raman scattering," Appl. Opt. 52, 8809-8816 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode,” J. Am. Chem. Soc. 99, 5215–5217 (1977). [CrossRef]
  2. D. L. Jeanmaire and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977). [CrossRef]
  3. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef]
  4. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997). [CrossRef]
  5. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, “Surface enhanced Raman scattering enhancement factors: a comprehensive study,” J. Phys. Chem. C 111, 13794–13803 (2007). [CrossRef]
  6. A. Otto, “The ‘chemical’ (electronic) contribution to surface-enhanced Raman scattering,” J. Raman Spectrosc. 36, 497–509 (2005). [CrossRef]
  7. E. C. Le Ru and P. G. Etchegoin, “Rigorous justification of the |E|4 enhancement factor in surface enhanced Raman spectroscopy,” Chem. Phys. Lett. 423, 63–66 (2006). [CrossRef]
  8. M.-D. Li, Y. Cui, M.-X. Gao, J. Luo, B. Ren, and Z.-Q. Tian, “Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane,” Anal. Chem. 80, 5118–5125 (2008). [CrossRef]
  9. M. Potara, A. M. Gabudean, and S. Astilean, “Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles,” J. Mater. Chem. 21, 3625–3633 (2011). [CrossRef]
  10. A. M. Gabudean, D. Biro, and S. Astilean, “Localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS) studies of 4-aminothiophenol adsorption on gold nanorods,” J. Mol. Struct. 993, 420–424 (2011). [CrossRef]
  11. Y.-J. Liu, Z.-Y. Zhang, Q. Zhao, and Y.-P. Zhao, “Revisiting the separation dependent surface enhanced Raman scattering,” Appl. Phys. Lett. 93, 173106 (2008). [CrossRef]
  12. A. Zenidaka, Y. Tanaka, T. Miyanishi, M. Terakawa, and M. Obara, “Comparison of two-dimensional periodic arrays of convex and concave nanostructures for efficient SERS templates,” Appl. Phys. A 103, 225–231 (2011). [CrossRef]
  13. F. Jäckel, A. A. Kinkhabwala, and W. E. Moerner, “Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential,” Chem. Phys. Lett. 446, 339–343 (2007). [CrossRef]
  14. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007). [CrossRef]
  15. W. Ahn, S. V. Boriskina, Y. Hong, and B. M. Reinhard, “Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices,” Nano Lett. 12, 219–227 (2012). [CrossRef]
  16. M. J. Gordon and D. Peyrade, “Separation of colloidal nanoparticles using capillary immersion forces,” Appl. Phys. Lett. 89, 053112 (2006). [CrossRef]
  17. J. Zuloaga, E. Prodan, and P. Nordlander, “Quantum description of the plasmon resonances of a nanoparticle dimer,” Nano Lett. 9, 887–891 (2009). [CrossRef]
  18. S. Bidault, F. J. García de Abajo, and A. Polman, “Plasmon-based nanolenses assembled on a well-defined DNA template,” J. Am. Chem. Soc. 130, 2750–2751 (2008). [CrossRef]
  19. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. D. Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9, 3922–3929 (2009). [CrossRef]
  20. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. D. Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17, 3741–3753 (2009). [CrossRef]
  21. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005). [CrossRef]
  22. G. Lévêque and R. Quidant, “Channeling light along a chain of near-field coupled gold nanoparticles near a metallic film,” Opt. Express 16, 22029–22038 (2008). [CrossRef]
  23. F. Zhou, Y. Liu, and Z.-Y. Li, “Surface-plasmon-polariton-assisted dipole-dipole interaction near metal surfaces,” Opt. Lett. 36, 1969–1971 (2011). [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  25. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1208 (1965). [CrossRef]
  26. C. F. Bohren and D. R. Huffman, “Absorption and scattering by a sphere,” in Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 2007), pp. 82–129.
  27. M. Quinten and U. Kreibig, “Absorption and elastic scattering of light by particle aggregates,” Appl. Opt. 32, 6173–6182 (1993). [CrossRef]
  28. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  29. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003). [CrossRef]
  30. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4, 899–903 (2004). [CrossRef]
  31. T. Takemori, M. Inoue, and K. Ohtaka, “Optical response of a sphere coupled to a metal substrate,” J. Phys. Soc. Jpn. 56, 1587–1602 (1987). [CrossRef]
  32. P. Nordlander and E. Prodan, “Plasmon hybridization in nanoparticles near metallic surfaces,” Nano Lett. 4, 2209–2213 (2004). [CrossRef]
  33. Y. Q. He, S. P. Liu, L. Kong, and Z. F. Liu, “A study on the sizes and concentrations of gold nanoparticles by spectra of absorption, resonance Rayleigh scattering and resonance non-linear scattering,” Spectrochim. Acta, Part A 61, 2861–2866 (2005). [CrossRef]
  34. C. L. Haynes and R. P. Van Duyne, “Plasmon-sampled surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 107, 7426–7433 (2003). [CrossRef]
  35. A. D. McFarland, M. A. Young, J. A. Dieringer, and R. P. Van Duyne, “Wavelength-scanned surface-enhanced Raman excitation spectroscopy,” J. Phys. Chem. B 109, 11279–11285 (2005). [CrossRef]
  36. Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B 70, 035418 (2004). [CrossRef]
  37. S. V. Boriskina and B. M. Reinhard, “Molding the flow of light on the nanoscale: from vortex nanogears to phase-operated plasmonic machinery,” Nanoscale 4, 76–90 (2012). [CrossRef]
  38. J.-W. Dong and Z.-L. Deng, “Direct eigenmode analysis of plasmonic modes in metal nanoparticle chain with layered medium,” Opt. Lett. 38, 2244–2246 (2013). [CrossRef]
  39. H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B 6, S404–S409 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited