OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 640–652

Modeling the scattering properties of mineral aerosols using concave fractal polyhedra

Chao Liu, R. Lee Panetta, Ping Yang, Andreas Macke, and Anthony J. Baran  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. 640-652 (2013)
http://dx.doi.org/10.1364/AO.52.000640


View Full Text Article

Enhanced HTML    Acrobat PDF (787 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The single-scattering properties of concave fractal polyhedra are investigated, with particle size parameters ranging from the Rayleigh to geometric-optics regimes. Two fractal shape parameters, irregularity and aspect ratio, are used to iteratively construct “generations” of irregular fractal particles. The pseudospectral time-domain (PSTD) method and the improved geometric-optics method (IGOM) are combined to compute the single-scattering properties of fractal particles over the range of size parameters. The effects of fractal generation, irregularity, and aspect ratio on the single-scattering properties of fractals are investigated. The extinction efficiency, absorption efficiency, and asymmetry factor, calculated by the PSTD method for fractal particles, with small-to-moderate size parameters, smoothly bridges the gap between those size parameters and size parameters for which solutions given by the IGOM may be used. Somewhat surprisingly, excellent agreement between values of the phase function of randomly oriented fractal particles calculated by the two numerical methods is found, not only for large particles, but in fact extends as far down in equivalent-projected-area size parameters as 25. The agreement in the case of other nonzero phase matrix elements is not as good at so small a size. Furthermore, the numerical results of ensemble-averaged phase matrix elements of a single fractal realization are compared with dust particle measurements, and good agreement is found by using the fractal particle model to represent data from a study of feldspar aerosols.

© 2013 Optical Society of America

OCIS Codes
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(080.0080) Geometric optics : Geometric optics
(260.0260) Physical optics : Physical optics
(290.0290) Scattering : Scattering

ToC Category:
Scattering

History
Original Manuscript: August 1, 2012
Revised Manuscript: October 27, 2012
Manuscript Accepted: November 9, 2012
Published: January 30, 2013

Citation
Chao Liu, R. Lee Panetta, Ping Yang, Andreas Macke, and Anthony J. Baran, "Modeling the scattering properties of mineral aerosols using concave fractal polyhedra," Appl. Opt. 52, 640-652 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-640


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Chýlek and J. A. Coakley, “Aerosols and climate,” Science 183, 75–77 (1974). [CrossRef]
  2. M. I. Mishchenko, A. A. Lacis, B. E. Carlson, and L. D. Travis, “Nonsphericity of dust-like tropospheric aerosols: implications for aerosol remote sensing and climate modeling,” Geophys. Res. Lett. 22, 1077–1080 (1995). [CrossRef]
  3. V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Aerosols, climate, and the hydrological cycle,” Science 294, 2119–2124 (2001). [CrossRef]
  4. T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261–1279 (2009). [CrossRef]
  5. M. Kahnert, T. Nousiainen, and B. Veihelmann, “Spherical and spheroidal model particles as an error source in aerosol climate forcing and radiance computations: a case study for feldspar aerosols,” J. Geophys. Res. 110, D18S13 (2005). [CrossRef]
  6. H. Volten, O. Muæoz, J. W. Hovenier, and L. B. F. M. Waters, “An update of the Amsterdam light scattering database,” J. Quant. Spectrosc. Radiat. Transfer 100, 437–443 (2006). [CrossRef]
  7. P. Yang, Q. Feng, G. Hong, G. W. Kattawar, W. J. Wiscombe, M. I. Mishchenko, O. Dubovik, I. Laszlo, and I. N. Sokolik, “Modeling of the scattering and radiative properties of nonspherical dust-like aerosols,” J. Aerosol Sci. 38, 995–1014 (2007). [CrossRef]
  8. S. R. Osborne, B. T. Johnson, J. M. Haywood, A. J. Baran, M. A. J. Harrison, and C. L. McConnell, “Physical and optical properties of mineral dust aerosol during the dust and biomass-burning experiment,” J. Geophys. Res. 113, D00C03(2008). [CrossRef]
  9. S. R. Osborne, A. J. Baran, B. T. Johnson, J. M. Haywood, E. Hesse, and S. Newman, “Short-wave and long-wave radiative properties of Saharan dust aerosol,” Q. J. R. Meteorol. Soc. 137, 1149–1167 (2011). [CrossRef]
  10. J. M. Haywood, B. T. Johnson, S. R. Osborne, A. J. Baran, M. Brooks, S. F. Milton, J. Mulcahy, D. Walters, R. P. Allan, M. J. Woodage, A. Klaver, P. Formenti, H. E. Brindley, S. Christopher, and P. Gupta, “Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign,” Q. J. R. Meteorol. Soc. 137, 1106–1116 (2011). [CrossRef]
  11. B. Yi, C. N. Hsu, P. Yang, and S.-C. Tsay, “Radiative transfer simulation of dust-like aerosols: uncertainties from particle shape and refractive index,” J. Aerosol Sci. 42, 631–644(2011). [CrossRef]
  12. H. Volten, O. Muñoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106, 17375–17401 (2001). [CrossRef]
  13. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  14. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971). [CrossRef]
  15. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  16. L. Liu and M. I. Mishchenko, “Effects of aggregation on scattering and radiative properties of soot aerosols,” J. Geophys. Res. 110, D11211 (2005). [CrossRef]
  17. C. Liu, R. L. Panetta, and P. Yang, “The influence of water coating on the optical scattering properties of fractal soot aggregates,” Aerosol Sci. Technol. 46, 31–43 (2012). [CrossRef]
  18. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).
  19. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072–2085 (1996). [CrossRef]
  20. Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997). [CrossRef]
  21. G. Chen, P. Yang, and G. W. Kattawar, “Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles,” J. Opt. Soc. Am. A 25, 785–790 (2008). [CrossRef]
  22. C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transfer 113, 1728–1740(2012). [CrossRef]
  23. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  24. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011). [CrossRef]
  25. E. Zubko, K. Muinonen, Y. Shkuratov, G. Videen, and T. Nousiainen, “Scattering of light by roughened Gaussian random particles,” J. Quant. Spectrosc. Radiat. Transfer 106, 604–615 (2007). [CrossRef]
  26. S. Merikallio, H. Lindqvist, T. Nousiainen, and M. Kahnert, “Modeling light scattering by mineral dust using spheroids: assessment of applicability,” Atmos. Chem. Phys. 11, 5347–5363 (2011). [CrossRef]
  27. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Single-scattering properties of triaxial ellipsoidal particles for a size parameter range from the Rayleigh to geometric-optics regimes,” Appl. Opt. 48, 114–126 (2009). [CrossRef]
  28. L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, “Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra,” Appl. Opt. 49, 334–342 (2010). [CrossRef]
  29. P. Yang, K. N. Liou, and W. P. Arnott, “Extinction efficiency and single-scattering albedo for laboratory and natural cirrus clouds,” J. Geophys. Res. 102, 21825–21835 (1997). [CrossRef]
  30. P. Yang, H. Wie, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, “Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region,” Appl. Opt. 44, 5512–5523 (2005). [CrossRef]
  31. A. J. Baran, “From the single-scattering properties of ice crystals to climate prediction: a way forward,” Atmos. Res. 112, 45–69 (2012). [CrossRef]
  32. A. Macke and F. Tzschichholz, “Scattering of light by two-dimensional deterministic Koch islands,” Phys. A 191, 545–548 (1992). [CrossRef]
  33. A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystals,” J. Atmos. Sci. 53, 2813–2825 (1996). [CrossRef]
  34. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568–6584 (1996). [CrossRef]
  35. P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contr. Atmos. Phys. 71, 223–248 (1998).
  36. K. Muinonen, “Scattering of light by crystals: a modified Kirchhoff approximation,” Appl. Opt. 28, 3044–3050(1989). [CrossRef]
  37. L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X. Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, “Simulation of the color ratio associated with the backscattering of radiation by ice particles at wavelengths of 0.532 and 1.064 μm,” J. Geophys. Res. 114, D00H08 (2009). [CrossRef]
  38. L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A. Baum, “Scattering and absorption of light by ice particles: solution by a new physical-geometric optics hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 112, 1492–1508 (2011). [CrossRef]
  39. T. Nousiainen, M. Kahnert, and B. Veihelmann, “Light scattering modeling of small feldspar aerosol particles using polyhedral; prims and spheroids,” J. Quant. Spectrosc. Radiat. Transfer 101, 471–487 (2006). [CrossRef]
  40. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, 1983).
  41. K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications (Wiley, 2003).
  42. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles(Cambridge University, 2002).
  43. A. A. Kokhanovsky, Polarization Optics of Random Media (Springer, 2003).
  44. A. A. Kokhanovsky, Light Scattering Media Optics: Problems and Solutions (Springer, 2004).
  45. A. J. M. Clarke, E. Hesse, Z. Ulanowski, and P. H. Kaye, “A 3D implementation of ray-tracing with diffraction on facets: verification and a potential application,” J. Quant. Spectrosc. Radiat. Transfer 100, 103–114 (2006). [CrossRef]
  46. E. Hesse, “Modeling diffraction during ray-tracing using the concept of energy flow lines,” J. Quant. Spectrosc. Radiat. Transfer 109, 1374–1383 (2008). [CrossRef]
  47. C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20, 16763–16776 (2012). [CrossRef]
  48. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911(2007). [CrossRef]
  49. C. L. McConnell, P. Formenti, E. J. Highwood, and M. A. J. Harrison, “Using aircraft measurements to determine the refractive index of Saharan dust during the DODO experiments,” Atmos. Chem. Phys. 10, 3081–3098 (2010). [CrossRef]
  50. W. B. Gordon, “Far-field approximations to the Kirchhoff–Helmholtz representations of scattered fields,” IEEE Trans. Antennas Propag. 23, 590–592 (1975). [CrossRef]
  51. D. S. Jones, “Approximate methods in high-frequency scattering,” Proc. R. Soc. A 239, 338–348 (1957). [CrossRef]
  52. D. S. Jones, “High-frequency scattering of electromagnetic waves,” Proc. R. Soc. A 240, 206–213 (1957). [CrossRef]
  53. G. R. Fournier and B. T. N. Evans, “Approximation to extinction efficiency for randomly oriented spheroids,” Appl. Opt. 30, 2042–2048 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited