OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 674–682

Lattice algebra approach to multispectral analysis of ancient documents

Juan C. Valdiviezo-N and Gonzalo Urcid  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. 674-682 (2013)
http://dx.doi.org/10.1364/AO.52.000674


View Full Text Article

Enhanced HTML    Acrobat PDF (935 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper introduces a lattice algebra procedure that can be used for the multispectral analysis of historical documents and artworks. Assuming the presence of linearly mixed spectral pixels captured in a multispectral scene, the proposed method computes the scaled min- and max-lattice associative memories to determine the purest pixels that best represent the spectra of single pigments. The estimation of fractional proportions of pure spectra at each image pixel is used to build pigment abundance maps that can be used for subsequent restoration of damaged parts. Application examples include multispectral images acquired from the Archimedes Palimpsest and a Mexican pre-Hispanic codex.

© 2013 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2960) Image processing : Image analysis
(100.4996) Image processing : Pattern recognition, neural networks

ToC Category:
Image Processing

History
Original Manuscript: September 24, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 20, 2012
Published: January 30, 2013

Citation
Juan C. Valdiviezo-N and Gonzalo Urcid, "Lattice algebra approach to multispectral analysis of ancient documents," Appl. Opt. 52, 674-682 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-674


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Easton and W. Noel, “Infinite possibilities: ten years of study of the Archimedes Palimpsest,” in Proc. Am. Philos. Soc. 154, 50–76 (2010).
  2. M. Lettner and R. Sablatnig, “Multispectral imaging for analyzing ancient manuscripts,” in Proceedings of the 17th European Signal Processing Conference (EURASIP, 2009), pp. 1200–1204.
  3. K. Rapantzikos and C. Balas, “Hyperspectral imaging: potential in nondestructive analysis of paintings,” in Proceedings of the IEEE International Conference on Image Processing (IEEE, 2005), pp. 618–621.
  4. S. Tominaga and N. Tanaka, “Spectral image acquisition, analysis, and rendering for art paintings,” J. Electron. Imaging 17, 043022 (2008). [CrossRef]
  5. C. Fisher and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Rev. Conserv. 7, 3–16 (2006).
  6. S. Baronti, A. Casini, F. Lotti, and S. Porcinai, “Multispectral imaging system for the mapping of pigments in works of art by use of principal component analysis,” Appl. Opt. 37, 1299–1309 (1998). [CrossRef]
  7. G. A. Ware, D. M. Chabries, R. W. Christiansen, J. E. Brady, and C. E. Martin, “Multispectral analysis of ancient Maya pigments: implications for the Naj Tunich corpus,” in Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium (IEEE, 2000), pp. 2489–2491.
  8. M. Attas, E. Cloutis, C. Collins, D. Goltz, C. Majzels, J. R. Mansfield, and H. H. Mantsch, “Near-infrared spectroscopy imaging in art conservation: investigation of drawing constituents,” J. Cult. Herit. 4, 127–136 (2003). [CrossRef]
  9. K. Knox, R. Johnston, and R. L. Easton, “Imaging the Dead Sea Scrolls,” Opt. Photonics News 8(8), 30–34 (1997).
  10. R. L. Easton, K. T. Knox, and W. A. Christens-Barry, “Multispectral imaging of the Archimedes Palimpsest,” in Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop (IEEE, 2003), pp. 111–116.
  11. E. Salerno, A. Tonazzini, and L. Bedini, “Digital image analysis to enhance underwritten text in the Archimedes Palimpsest,” Int. J. Document Anal. 9, 79–87 (2007). [CrossRef]
  12. M. Lettner and R. Sablatnig, “Spatial and spectral based segmentation of text in multispectral images of ancient documents,” in Proceedings of the 10th International Conference on Document Analysis and Recognition (IEEE, 2009), pp. 813–817.
  13. M. Barni, A. Pelagotti, and A. Piva, “Image processing for the analysis and conservation of paintings: opportunities and challenges,” IEEE Signal Process. Mag. 22(5), 141–144 (2005). [CrossRef]
  14. J. R. J. Van Asperen de Boer, “Reflectography of paintings using an infrared vidicon television system,” Stud. Conserv. 14, 96–118 (1969). [CrossRef]
  15. “Archimedes Palimpsest project,” http://archimedespalimpsest.net/Data/0000-100v/ .
  16. “Biblioteca Digital Mexicana,” http://bdmx.mx .
  17. J. Conde, H. Haneishi, M. Yamaguchi, N. Ohyama, and J. Baez, “Spectral reflectance estimation of ancient Mexican codices, multispectral images approach,” Rev. Mexicana Fís. 50, 484–489 (2004).
  18. M. Yamaguchi, H. Haneishi, H. Fukuda, J. Kishimoto, H. Kanazawa, M. Tsuchida, R. Iwama, and N. Ohyama, “High-fidelity video and still-image communication based on spectral information: natural vision system and its applications,” Proc. SPIE 6062, 60620G (2006). [CrossRef]
  19. M. Yamaguchi, T. Teraji, K. Ohsawa, T. Uchiyama, H. Motomura, Y. Murakami, and N. Ohyama, “Color image reproduction based on the multispectral and multiprimary imaging: experimental evaluation,” Proc. SPIE 4663, 15–26 (2002). [CrossRef]
  20. W. Pratt and C. E. Mancill, “Spectral estimation techniques for the spectral calibration of a color image scanner,” Appl. Opt. 15, 73–75 (1976). [CrossRef]
  21. S. K. Park and F. O. Huck, “Estimation of spectral reflectance curves from multispectral image data,” Appl. Opt. 16, 3107–3114 (1977). [CrossRef]
  22. N. Keshava and J. F. Mustard, “Spectral unmixing,” IEEE Signal Process. Mag. 19(1), 44–57 (2002). [CrossRef]
  23. G. X. Ritter, P. Sussner, and J. L. Díaz de León, “Morphological associative memories,” IEEE Trans. Neural Netw. 9, 281–293 (1998). [CrossRef]
  24. G. X. Ritter, G. Urcid, and L. Iancu, “Reconstruction of patterns from noisy inputs using morphological associative memories,” J. Math. Imaging Vision 19, 95–111 (2003). [CrossRef]
  25. V. G. Kaburlasos and G. X. Ritter, eds., Computational Intelligence based on Lattice Theory, Vol. 67 (Springer-Verlag, 2007).
  26. G. X. Ritter and P. Gader, “Fixed point of lattice transforms and lattice associative memories,” in Advances in Imaging and Electron Physics, P. Hawkes, ed., Vol. 144 (Elsevier, 2006), pp. 165–242.
  27. G. Urcid and J. C. Valdiviezo-N, “Generation of lattice independent vector sets for pattern recognition applications,” Proc. SPIE 6700, 67000C (2007). [CrossRef]
  28. R. Cuninghame-Green, “Minimax algebra and applications,” in Advances in Imaging and Electron Physics, P. Hawkes, ed., Vol. 90 (Academic, 1995), pp. 1–121.
  29. G. Urcid and J. C. Valdiviezo-N, “Lattice algebra approach to color image segmentation,” J. Math. Imaging Vision 42, 150–162 (2012). [CrossRef]
  30. G. X. Ritter, G. Urcid, and M. S. Schmalz, “Autonomous single-pass endmember approximation using lattice auto-associative memories,” Neurocomputing 72, 2101–2110 (2009). [CrossRef]
  31. G. X. Ritter and G. Urcid, “Lattice algebra approach to endmember determination in hyperspectral imagery,” in Advances in Imaging and Electron Physics, P. W. Hawkes, ed., Vol. 160 (Academic, 2010), pp. 113–169.
  32. S. Hordley, G. Finlayson, and P. Morovic, “A multi-spectral image database and an application to image rendering across illumination,” in Proceedings of the IEEE Third International Conference on Image and Graphics (IEEE, 2004), pp. 394–397.
  33. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, 1974).
  34. J. C. Valdiviezo-N and G. Urcid, “Multispectral images segmentation of ancient documents with lattice memories,” in Digital Image Processing and Analysis Conference, OSA Technical Digest Series (Optical Society of America, 2010), paper DMD6.
  35. Y.-Q. Zhao, L. Zhang, and S. G. Kong, “Band-subset-based clustering and fusion for hyperspectral imagery classification,” IEEE Trans. Geosci. Remote Sens. 49, 747–756 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited