OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 683–689

Thin-disk laser with Bessel-like output beam: theory and simulations

R. Aghbolaghi, S. Batebi, and J. Sabaghzadeh  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. 683-689 (2013)
http://dx.doi.org/10.1364/AO.52.000683


View Full Text Article

Enhanced HTML    Acrobat PDF (801 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have numerically shown that a high-power Bessel–Gauss beam can be generated by a solid-state thin-disk laser using an axicon-based resonator. Ytterbium ions doped in the YAG crystal were utilized in this configuration as an active medium. We obtained the output power, intensity, and phase profiles on the output coupler and the active medium.

© 2013 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3410) Lasers and laser optics : Laser resonators
(140.3615) Lasers and laser optics : Lasers, ytterbium

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 17, 2012
Revised Manuscript: November 14, 2012
Manuscript Accepted: December 10, 2012
Published: January 30, 2013

Citation
R. Aghbolaghi, S. Batebi, and J. Sabaghzadeh, "Thin-disk laser with Bessel-like output beam: theory and simulations," Appl. Opt. 52, 683-689 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-683


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hasegawa and F. Tapert, “Transmission of stationary nonlinear optical pulse in dispersive dielectric fibers: I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973). [CrossRef]
  2. L. F. Mollenaure, R. H. Stolen, and J. P. Gordon, “Experimental observation of picoseconds pulse narrowing and solitons in optical fiber,” Phys. Rev. Lett. 45, 1095–1098 (1980). [CrossRef]
  3. A. J. Durnin, “Exact solutions for nondiffracting beams. I. the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987). [CrossRef]
  4. M. Dallaire, N. McCarthy, and M. Piche, “Spatiotemporal Bessel beams: theory and experiments,” Opt. Express 17, 18148–18158 (2009). [CrossRef]
  5. C. Lopez-Mariscal and K. Helmerson, “Shaped nondiffracting beams,” Opt. Lett. 35, 1215–1217 (2010). [CrossRef]
  6. J. Durnin, J. J. Micely, and J. H. Eberly, “Diffraction free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987). [CrossRef]
  7. F. Gori, G. Guattari, and C. Padovani, “Bessel–Gauss beams,” Opt. Commun. 64, 491–495 (1987). [CrossRef]
  8. E. Abramochkin and V. Volostnikov, “Spiral-type beams,” Opt. Commun. 102, 336–350 (1993). [CrossRef]
  9. S. Chávez-Cerda, G. S. McDonald, and G. H. C. New, “Nondiffracting beams: travelling, standing, rotating and spiral waves,” Opt. Commun. 123, 225–233 (1996). [CrossRef]
  10. C. Paterson and R. Smith, “Helicon waves: propagation invariant waves in a rotating coordinate system,” Opt. Commun. 124, 131–140 (1996). [CrossRef]
  11. R. Piestun and J. Shamir, “Generalized propagation invariant wave fields,” J. Opt. Soc. Am. A 15, 3039–3044 (1998). [CrossRef]
  12. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chavez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25, 1493–1495 (2000). [CrossRef]
  13. J. C. Gutiérrez-Vega, R. Rodríguez-Masegosa, and S. Chávez-Cerda, “Bessel–Gauss resonator with spherical output mirror: geometrical and wave-optics analysis,” J. Opt. Soc. Am. A 20, 2113–2122 (2003). [CrossRef]
  14. C. L. Tsangaris, G. H. C. New, and J. Rogel-Salazar, “Unstable Bessel beam resonator,” Opt. Commun. 223, 233–238 (2003). [CrossRef]
  15. G. Indebetouw, “Nondiffracting optical fields: some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989). [CrossRef]
  16. G. Scott and N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992). [CrossRef]
  17. J. Turunen, A. Vasara, and A. T. Friberg, “Holographic generation of diffraction-free beams,” Appl. Opt. 27, 3959–3962 (1988). [CrossRef]
  18. A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general nondiffracting beams with computer-generated holograms,” J. Opt. Soc. Am. A 6, 1748–1754 (1989). [CrossRef]
  19. Z. L. Horváth, M. Erdélyi, G. Szabó, Z. Bor, F. K. Tittel, and J. R. Cavallaro, “Generation of nearly nondiffracting Bessel beams with a Fabry–Perot interferometer,” J. Opt. Soc. Am. A 14, 3009–3013 (1997). [CrossRef]
  20. W.-X. Cong, N.-X. Chen, and B.-Y. Gu, “Generation of nondiffracting beams by diffractive phase elements,” J. Opt. Soc. Am. A 15, 2362–2364 (1998). [CrossRef]
  21. J. Durnin and J. H. Eberly, “Diffraction free arrangement,” U.S. patent 4,887,885 (19December1989).
  22. I. A. Litvin and A. Forbes, “Bessel–Gauss resonator with internal amplitude filter,” Opt. Commun. 281, 2385–2392 (2008). [CrossRef]
  23. K. Uehara and H. Kikuchi, “Generation of nearly diffraction-free laser beams,” Appl. Phys. B 48, 125–129 (1989). [CrossRef]
  24. P. Pääkkönen and J. Turunen, “Resonators with Bessel–Gauss modes,” Opt. Commun. 156, 359–366 (1998). [CrossRef]
  25. A. Hakola, S. C. Buchter, T. Kajava, H. Elfström, J. Simonen, P. Pääkkönen, and J. Turunen, “Bessel–Gauss output beam from a diode-pumped NdYAG laser,” Opt. Commun. 238, 335–340 (2004). [CrossRef]
  26. J. Rogel-Salazar, G. H. C. New, and S. Chávez-Cerda, “Bessel–Gauss beam optical resonator,” Opt. Commun. 190, 117–122 (2001). [CrossRef]
  27. A. N. Khilo, E. G. Katranji, and A. A. Ryzhevich, “Axicon-based Bessel resonator: analytical description and experiment,” J. Opt. Soc. Am. A 18, 1986–1992 (2001). [CrossRef]
  28. R. I. Hernández-Aranda, S. Chávez-Cerda, and J. C. Gutiérrez-Vega, “Theory of the unstable Bessel resonator,” J. Opt. Soc. Am. A 22, 1909–1916 (2005). [CrossRef]
  29. A. Giesen, H. Hugel, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994). [CrossRef]
  30. A. Giesen and J. Speiser, “Fifteen years of work on thin-disk lasers: results and scaling laws,” IEEE J. Sel. Top. Quantum Electron. 13, 598–609 (2007). [CrossRef]
  31. R. Aghbolaghi, J. Mollai, S. Batebi, and A. K. Jafari, “Numerical study of axicon-based Bessel–Gauss resonator for thin disk laser,” Proc. SPIE 7747, 77471H (2010). [CrossRef]
  32. M. J. Dashcasan, E. Barati, and R. Aghbolaghi, “Designing of an efficient multi-aperture, edge pumped thin-disk laser,” Opt. Laser Technol. 44, 800–805 (2012). [CrossRef]
  33. S. A. Collins, “Lens-system diffraction integral written in term of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970). [CrossRef]
  34. M. Ostermeyer and A. Straesser, “Theoretical investigation of feasibility of Yb:YAG as laser material for nanosecond pulse emission with large energies in the Joule range,” Opt. Commun. 274, 422–428 (2007). [CrossRef]
  35. G. L. Bordet and E. Bartniki, “Generalized formula for continuous-wave end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations,” Appl. Opt. 45, 9203–9209 (2006). [CrossRef]
  36. G. L. Bordet, “Theoretical investigation of quasi-three-level longitudinally pumped continuous wave lasers,” Appl. Opt. 39, 966–971 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited