OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 690–697

Effect of surrounding inhomogeneities on whispering gallery modes in spherical resonators

Sina Amini, Yu You, George W. Kattawar, and Kenith E. Meissner  »View Author Affiliations

Applied Optics, Vol. 52, Issue 4, pp. 690-697 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (833 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Amsterdam discrete dipole approximation (ADDA) is used to study the effects of an inhomogeneous refractive index in the surrounding medium of a microspherical resonator on the quality and position of the whispering gallery modes (WGMs). The model consists of a polystyrene microsphere with a refractive index, n, of 1.587 surrounded by water (n=1.333) and an inhomogeneity (n=1.5) on top of the microsphere. The effect of the area of the inhomogeneity on the WGMs is modeled using the ADDA code and compared with Lorenz–Mie code. WGMs of various quantum dot embedded microspheres mounted on atomic force microscope cantilevers are experimentally measured and shown to be consistent with the model.

© 2013 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(230.5750) Optical devices : Resonators
(290.4020) Scattering : Mie theory
(290.5820) Scattering : Scattering measurements
(290.5825) Scattering : Scattering theory

ToC Category:
Optical Devices

Original Manuscript: October 26, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 17, 2012
Published: January 30, 2013

Sina Amini, Yu You, George W. Kattawar, and Kenith E. Meissner, "Effect of surrounding inhomogeneities on whispering gallery modes in spherical resonators," Appl. Opt. 52, 690-697 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Pollinger, D. O’Shea, F. Warken, and A. Rauschenbeutel, “Ultrahigh-Q tunable whispering-gallery-mode microresonator,” Phys. Rev. Lett. 103, 053901 (2009). [CrossRef]
  2. L. N. He, K. Ozdemir, J. G. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nature Nanotechnol. 6, 428–432 (2011). [CrossRef]
  3. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  4. H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37, 1974–1983 (2009). [CrossRef]
  5. A. Chiasera, Y. Dumeige, P. Feron, M. Ferrari, Y. Jestin, G. N. Conti, S. Pelli, S. Soria, and G. C. Righini, “Spherical whispering-gallery-mode microresonators,” Laser Photon. Rev. 4, 457–482 (2010). [CrossRef]
  6. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057–4059 (2002). [CrossRef]
  7. S. Arnold and F. Vollmer, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef]
  8. J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92, 2223–2229 (2007). [CrossRef]
  9. H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, “High-Q microsphere biosensor—analysis for adsorption of rodlike bacteria,” Opt. Express 15, 17410–17423 (2007). [CrossRef]
  10. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28, 272–274 (2003). [CrossRef]
  11. I. Teraoka, S. Arnold, and F. Vollmer, “Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium,” J. Opt. Soc. Am. B 20, 1937–1946 (2003). [CrossRef]
  12. I. Teraoka and S. Arnold, “Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications,” Opt. Soc. Am. B 23, 1381–1389 (2006). [CrossRef]
  13. M. Noto, D. Keng, I. Teraoka, and S. Arnold, “Detection of protein orientation on the silica microsphere surface using transverse electric/transverse magnetic whispering gallery modes,” Biophys. J. 92, 4466–4472 (2007). [CrossRef]
  14. I. Teraoka and S. Arnold, “Dielectric property of particles at interface in random sequential adsorption and its application to whispering gallery mode resonance-shift sensors,” J. Appl. Phys. 101, 023505 (2007). [CrossRef]
  15. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973). [CrossRef]
  16. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994). [CrossRef]
  17. G. Mie, “Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions,” Ann. Phys. 330, 377–445 (1908). [CrossRef]
  18. M. I. Mishchenko, L. D. Travis, and D. W. Mackowski, “T-matrix computations of light scattering by nonspherical particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996). [CrossRef]
  19. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  20. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., Artech House Antennas and Propagation Library (Artech House, 2000).
  21. M. Oxborrow, “Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators,” IEEE Trans. Microwave Theor. Tech. 55, 1209–1218 (2007). [CrossRef]
  22. A. V. Boriskin, S. V. Boriskina, A. Rolland, R. Sauleau, and A. I. Nosich, “Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder,” J. Opt. Soc. Am. A 25, 1169–1173 (2008). [CrossRef]
  23. J. Parsons, C. P. Burrows, J. R. Sambles, and W. L. Barnes, “A comparison of techniques used to simulate the scattering of electromagnetic radiation by metallic nanostructures,” J. Mod. Opt. 57, 356–365 (2010). [CrossRef]
  24. K. Busch, M. Konig, and J. Niegemann, “Discontinuous Galerkin methods in nanophotonics,” Laser Photon. Rev. 5, 773–809 (2011). [CrossRef]
  25. R. Rodriguez-Oliveros and J. A. Sanchez-Gil, “Localized surface-plasmon resonances on single and coupled nanoparticles through surface integral equations for flexible surfaces,” Opt. Express 19, 12208–12219 (2011). [CrossRef]
  26. G. Tang, R. L. Panetta, and P. Yang, “Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles,” Appl. Opt. 49, 2827–2840 (2010). [CrossRef]
  27. W. L. Barnes, “Comparing experiment and theory in plasmonics,” J. Opt. A 11, 114002 (2009). [CrossRef]
  28. M. A. Yurkin and A. G. Hoekstra, “The discrete-dipole-approximation code ADDA: capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247(2011). [CrossRef]
  29. http://code.google.com/p/a-dda .
  30. S. Amini, Z. Sun, G. A. Meininger, and K. E. Meissner, “Combining nanoscale optical phenomena with atomic force microscopy for cellular studies,” Proc. SPIE 8225, 82251R (2012). [CrossRef]
  31. S. Pang, R. E. Beckham, and K. E. Meissner, “Quantum dot-embedded microspheres for remote refractive index sensing,” Appl. Phys. Lett. 92, 211108 (2008). [CrossRef]
  32. E. E. Lees, M. J. Gunzburg, T. L. Nguyen, G. J. Howlett, J. Rothacker, E. C. Nice, A. H. A. Clayton, and P. Mulvaney, “Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation,” Nano Lett. 8, 2883–2890 (2008). [CrossRef]
  33. X. G. Peng and Z. A. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor,” J. Am Chem. Soc. 123, 183–184 (2001). [CrossRef]
  34. Z. Sun, A. Juriani, G. A. Meininger, and K. E. Meissner, “Probing cell surface interactions using atomic force microscope cantilevers functionalized for quantum dot-enabled Forster resonance energy transfer,” J. Biomed. Opt. 14, 040502 (2009). [CrossRef]
  35. http://sc.tamu.edu .
  36. G. Gouesbet, J. A. Lock, and G. Grehan, “Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: localized approximations and localized beam models, a review,” J. Quant. Spectrosc. Radiat. Transfer 112, 1–27 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited