OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 698–705

Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals

Pavel A. Loiko, Konstantin V. Yumashev, Vladimir N. Matrosov, and Nikolai V. Kuleshov  »View Author Affiliations

Applied Optics, Vol. 52, Issue 4, pp. 698-705 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (512 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A detailed experimental study of dispersion and anisotropy of thermo-optic coefficients d n / d T and thermal coefficients of the optical path W = d n / d T + ( n 1 ) α is performed for tetragonal YVO 4 and GdVO 4 laser host crystals by a laser beam deviation method. It is supported by theoretical description of thermo-optic effects, taking into account the volumetric thermal expansion effect and the temperature dependence of electronic bandgap E g . Linear thermal expansion coefficients α were also determined by a dilatometric technique. Thermo-optic dispersion formulas describing temperature variation of the refractive index and the thermal lens effect are derived for a wide spectral range of 0.4–2 μm. It allows us to estimate the values of E g and d E g / d T for the studied crystals. The influence of materials parameters and pumping conditions on thermal lens properties is discussed, revealing the significant impact of anisotropic and temperature-dependent thermal conductivity.

© 2013 Optical Society of America

OCIS Codes
(140.6810) Lasers and laser optics : Thermal effects
(160.1190) Materials : Anisotropic optical materials
(160.4760) Materials : Optical properties
(260.1180) Physical optics : Crystal optics

ToC Category:
Physical Optics

Original Manuscript: November 1, 2012
Revised Manuscript: December 19, 2012
Manuscript Accepted: December 19, 2012
Published: January 30, 2013

Pavel A. Loiko, Konstantin V. Yumashev, Vladimir N. Matrosov, and Nikolai V. Kuleshov, "Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals," Appl. Opt. 52, 698-705 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Jensen, V. G. Ostroumov, J. P. Meyn, G. Huber, A. I. Zagumennyi, and I. A. Shcherbakov, “Spectroscopic characterization and laser performance of diode-laser-pumped Nd:GdVO4,” Appl. Phys. B 58, 373–379 (1994). [CrossRef]
  2. C. Maunier, J. L. Doualan, R. Moncorge, A. Speghinim, M. Bettinelli, and E. Cavalli, “Growth, spectroscopic characterization, and laser performance of Nd:LuVO4, a new infrared laser material that is suitable for diode pumping,” J. Opt. Soc. Am. B 19, 1794–1800 (2002). [CrossRef]
  3. V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Sherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Spectroscopy and continious-wave diode-pumped laser action of Yb3+:YVO4,” Opt. Lett. 29, 2491–2493 (2004). [CrossRef]
  4. H. J. Zhang, L. Zhu, X. L. Meng, Z. H. Yang, C. Q. Wang, W. T. Yu, Y. T. Chow, and M. K. Lu, “Thermal and laser properties of Nd:YVO4 crystal,” Cryst. Res. Technol. 34, 1011–1016 (1999). [CrossRef]
  5. H. Zhang, X. Meng, L. Zhu, and Z. Yang, “Growth and thermal properties of Nd:GdVO4 single crystal,” Mater. Res. Bull. 34, 1589–1593 (1999). [CrossRef]
  6. H. Zhang, J. Liu, J. Wang, C. Wang, L. Zhu, Z. Shao, X. Meng, X. Hu, and M. Jiang, “Characterization of the laser crystal Nd:GdVO4,” J. Opt. Soc. Am. B 19, 18–27 (2002). [CrossRef]
  7. D. E. Zelmon, J. M. Northridge, J. J. Lee, K. M. Currin, and D. Perlov, “Optical properties of Nd-doped rare-earth vanadates,” Appl. Opt. 49, 4973–4978 (2010). [CrossRef]
  8. L. J. Qin, X. L. Meng, H. Y. Shen, L. Zhu, B. C. Xu, L. X. Huang, H. R. Xia, P. Zhao, and G. Zheng, “Thermal conductivity and refractive indices of Nd:GdVO4 crystals,” Cryst. Res. Technol. 38, 793–797 (2003). [CrossRef]
  9. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one dimensional flash method,” Opt. Express 14, 10528–10536 (2006). [CrossRef]
  10. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagaev, T. H. Chyba, J. C. Barnes, G. M. A. Gad, T. Murai, and J. Lub, “Tetragonal vanadates YVO4 and GdVO4—new efficient χ(3)-materials for Raman lasers,” Opt. Commun. 194, 201–206 (2001). [CrossRef]
  11. C. Kränkel, D. Fagundes-Peters, S. T. Fredrich, J. Johannsen, M. Mond, G. Huber, M. Bernhagen, and R. Uecker, “Continuous wave laser operation of Yb3+:YVO4,” Appl. Phys. B 79, 543–546 (2004). [CrossRef]
  12. V. Lupei, N. Pavel, Y. Sato, and T. Taira, “Highly efficient 1063 nm continuous-wave laser emission in Nd:GdVO4,” Opt. Lett. 28, 2366–2368 (2003). [CrossRef]
  13. A. M. Malyarevich, I. A. Denisov, K. V. Yumashev, V. P. Mikhailov, R. S. Conroy, and B. D. Sinclair, “V:YAG—a new passive Q-switch for diode-pumped solid-state lasers,” Appl. Phys. B 67, 555–558 (1998). [CrossRef]
  14. V. E. Kisel, A. E. Troshin, N. A. Tolstik, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Q-switched Yb3+:YVO4 laser with Raman self-conversion,” Appl. Phys. B 80, 471–473 (2005). [CrossRef]
  15. F. He, L. Huang, M. Gong, Q. Liu, and X. Yan, “Stable acousto-optics Q-switched Nd:YVO4 laser at 500 kHz,” Laser Phys. Lett. 4, 511–514 (2007). [CrossRef]
  16. V. E. Kisel, A. E. Troshin, V. G. Shcherbitsky, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Femtosecond pulse generation with a diode-pumped Yb3+:YVO4 laser,” Opt. Lett. 30, 1150–1152 (2005). [CrossRef]
  17. A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, W. Sibett, V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko, “Yb3+-doped YVO4 crystal for efficient Kerr-lens mode-locking in solid-state lasers,” Opt. Lett. 30, 3234–3236 (2005). [CrossRef]
  18. S. Rivier, X. Mateos, J. Liu, V. Petrov, U. Griebner, M. Zorn, M. Weyers, H. Zhang, J. Wang, and M. Jiang, “Passively mode-locked Yb:LuVO4 oscillator,” Opt. Express 14, 11668–11671 (2006). [CrossRef]
  19. B. Braun, F. X. Kartner, G. Zhang, M. Moser, and U. Keller, “56 ps passively Q-switched diode-pumped microchip laser,” Opt. Lett. 22, 381–383 (1997). [CrossRef]
  20. T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode-pumped Nd:YVO4 microchip lasers,” Opt. Lett. 16, 1955–1957 (1991). [CrossRef]
  21. C. H. Zhang, B. Q. Yao, G. Li, Q. Wang, Y. L. Ju, and Y. Z. Wang, “2041.3  nm/2054.6  nm simultaneous dual-wavelength single-longitudinal-mode Tm, Ho:YVO4 microchip laser,” Laser Phys. 20, 1564–1567 (2010). [CrossRef]
  22. A. J. Lee, H. M. Pask, P. Dekker, and J. A. Piper, “High efficiency, multi-watt cw yellow emission from an intracavity-doubled self-Raman laser using Nd:GdVO4,” Opt. Express 16, 21958–21963 (2008). [CrossRef]
  23. Y. F. Lu, W. B. Cheng, Z. Xiong, J. Lu, L. J. Xu, G. C. Sun, and Z. M. Zhao, “Efficient cw laser at 559 nm by intracavity sum-frequency mixing in a self-Raman Nd:YVO4 laser under direct 880 nm diode laser pumping,” Laser Phys. Lett. 7, 787–789 (2010). [CrossRef]
  24. V. E. Kisel, N. A. Tolstik, A. E. Troshin, N. V. Kuleshov, V. N. Matrosov, T. A. Matrosova, M. I. Kupchenko, F. Brunner, R. Paschotta, F. Morier-Genoud, and U. Keller, “Spectroscopy and femtosecond laser performance of Yb3+:Gd0.64Y0.36VO4 crystal,” Appl. Phys. B 85, 581–584 (2006). [CrossRef]
  25. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: the case of ytterbium-doped materials,” Prog. Quantum Electron. 30, 89–153(2006). [CrossRef]
  26. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006).
  27. P. K. Mukhopadhyay, A. Nautiyal, P. K. Gupta, K. Ranganathan, J. George, S. K. Sharma, and T. P. S. Nathan, “Experimental determination of the thermo-optic coefficient (dn/dT) and the effective stimulated emission cross-section (σe) of an a-axis cut 1 at. % doped Nd:GdVO4 crystal at 1.06 μm wavelength,” Appl. Phys. B 77, 81–87 (2003). [CrossRef]
  28. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007). [CrossRef]
  29. X. Wang, S. Tang, Y. Tang, and N. Fernelius, “Thermal and thermo-optical properties of new Nd:YxGd1−xVO4 crystals,” Proc. SPIE 5723, 147–151 (2005). [CrossRef]
  30. D. E. Zelmon, J. J. Lee, K. M. Currin, J. M. Northridge, and D. Perlov, “Revisiting the optical properties of Nd doped yttrium orthovanadate,” Appl. Opt. 49, 644–647 (2010). [CrossRef]
  31. Y. Sato and T. Taira, “Thermo-optical and -mechanical parameters of Nd:GdVO4 and Nd:YVO4,” in Conference for Lasers and Electro-Optics (IEEE, 2007).
  32. R. Soulard, A. Zinoviev, J. L. Doualan, E. Ivakin, O. Antipov, and R. Moncorgé, “Detailed characterization of pump-induced refractive index changes observed in Nd:YVO4, Nd:GdVO4 and Nd:KGW,” Opt. Express 18, 1553–1568 (2010). [CrossRef]
  33. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients and thermal lensing in the Nd-doped KGd(WO4)2 laser crystals,” Appl. Opt. 49, 6651–6659 (2010). [CrossRef]
  34. S. Vatnik, M. C. Pujol, J. J. Carvajal, X. Mateos, M. Aguiló, F. Díaz, and V. Petrov, “Thermo-optic coefficients of monoclinic KLu(WO4)2,” Appl. Phys. B 95, 653–656 (2009). [CrossRef]
  35. S. Zhang, S. Zhou, H. Li, and L. Li, “Investigation of thermal expansion and compressibility of rare-earth orthovanadates using a dielectric chemical bond method,” Inorg. Chem. 47, 7863–7867 (2008). [CrossRef]
  36. N. R. Reddy and K. S. Nurthy, “Thermal expansion of yttrium vanadate,” J. Mater. Sci. Lett. 2, 139–140 (1983). [CrossRef]
  37. G. Bayer, “Thermal expansion of ABO4 compounds with zircon and scheelite structure,” J. Less-Common Met. 26, 255–262 (1972). [CrossRef]
  38. E. C. Subbarao, D. K. Agrawal, H. A. McKinstry, C. W. Salese, and R. Roy, “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc. 73, 1246–1252 (1990). [CrossRef]
  39. H. Zhang, X. Meng, L. Zhu, P. Wang, X. Liu, Z. Yang, J. Dawes, and P. Dekker, “Growth, morphology and characterization of Yb:YVO4 crystal,” Phys. Status Solidi A 175, 705–710 (1999). [CrossRef]
  40. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, 1998).
  41. P. A. Loiko, K. V. Yumashev, N. V. Kuleshov, G. E. Rachkovskaya, and A. A. Pavlyuk, “Thermo-optic dispersion formulas for monoclinic double tungstates K Re(WO4)2 where Re=Gd, Y, Lu, Yb,” Opt. Mater. 33, 1688–1694 (2011). [CrossRef]
  42. P. A. Loiko, V. V. Filippov, K. V. Yumashev, N. V. Kuleshov, and A. A. Pavlyuk, “Thermo-optic coefficients study in KGd(WO4)2 and KY(WO4)2 by a modified minimum deviation method,” Appl. Opt. 51, 2951–2957 (2012). [CrossRef]
  43. P. A. Studenikin, A. I. Zagumennyi, Y. D. Zavartsev, P. A. Popov, and I. A. Shcherbakov, “GdVO4 as a new medium for solid-state lasers: some optical and thermal properties of crystals doped with Cd3+, Tm3+, and Er3+ ions,” IEEE J. Quantum Electron. 25, 1162–1165 (1995). [CrossRef]
  44. A. I. Zagumennyi, Y. D. Zavartsev, P. A. Studenikin, V. I. Vlasov, I. A. Sherbakov, C. P. Wyss, W. Luthy, H. P. Weber, and P. A. Popov, “Thermal conductivity of a Tm3+:GdVO4 crystal and the operational characteristics of a microchip laser based on it,” IEEE J. Quantum Electron. 29, 298–300 (1999). [CrossRef]
  45. J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals,” Opt. Express 16, 8995–9010 (2008). [CrossRef]
  46. J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, and B. Ferrand, “Laser oscillation with low quantum defect in Yb:GdVO4, a crystal with high thermal conductivity,” Opt. Lett. 29, 833–835 (2004). [CrossRef]
  47. Z. Xiong, Z. G. Li, N. Moore, W. L. Huang, and G. C. Lim, “Detailed investigation of thermal effects in longitudinally diode-pumped Nd:YVO4 lasers,” IEEE J. Quantum Electron. 39, 979–986 (2003). [CrossRef]
  48. X. Peng, L. Xu, and A. Asundi, “Thermal lensing effects for diode-end-pumped Nd:YVO4 and Nd:YAG lasers,” Opt. Eng. 43, 2454–2461 (2004). [CrossRef]
  49. P. Shi, W. Chen, L. Li, and A. Gan, “Semianalytical thermal analysis on a Nd:YVO4 crystal,” Appl. Opt. 46, 4046–4051 (2007). [CrossRef]
  50. Y. T. Chang, Y. P. Huang, K. W. Su, and Y. F. Chen, “Comparison of thermal lensing effects between single-end and double-end diffusion-bonded Nd:YVO4 crystals for F3/24→I11/24 and F3/24→I13/24 transitions,” Opt. Express 16, 21155–21160 (2008). [CrossRef]
  51. H. J. Strauss, “Thermo-optical effects in high-power end-pumped vanadate lasers,” Ph.D. thesis (Stellenbosch University, 2010).
  52. H. J. Strauss, C. Bollig, H. M. von Bergmann, and M. J. D. Esser, “Comparative study of thermal lensing in low-doped Nd:YVO4 and Nd: GdVO4 of equal doping concentration,” in Conference for Lasers and Electro-Optics (IEEE, 2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited