OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 726–733

Probability mapping images in dynamic speckle classification

Isabel Passoni, Héctor Rabal, Gustavo Meschino, and Marcelo Trivi  »View Author Affiliations

Applied Optics, Vol. 52, Issue 4, pp. 726-733 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1056 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose the use of a learning procedure to identify regions of similar dynamics in speckle image sequences that includes more than one descriptor. This procedure is based on the application of a naïve Bayes statistical classifier comprising the use of several descriptors. The class frontiers can be depicted so that the proportion of identified regions may be measured. To demonstrate the results, assembly of an RGB image, where each plane (R, G, and B) is associated with a particular region (class), was labeled according to its biospeckle dynamics. A high brightness in one color means a high probability of the pixel belonging to the corresponding class, and vice versa.

© 2013 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(110.6150) Imaging systems : Speckle imaging
(100.4993) Image processing : Pattern recognition, Baysian processors

ToC Category:

Original Manuscript: July 5, 2012
Revised Manuscript: November 22, 2012
Manuscript Accepted: December 12, 2012
Published: January 30, 2013

Isabel Passoni, Héctor Rabal, Gustavo Meschino, and Marcelo Trivi, "Probability mapping images in dynamic speckle classification," Appl. Opt. 52, 726-733 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Rabal and R. Braga, eds., Dynamic Laser Speckle and Applications (CRS, Taylor & Francis, 2008).
  2. R. M. Haralick, K. Shanmugan, and I. Dinstein, “Textural features for image classification,” IEEE Trans. Syst. Man Cybern. 3, 610–621 (1973). [CrossRef]
  3. G. H. Sendra, H. J. Rabal, R. Arizaga, and M. Trivi, “Biospeckle images decomposition in temporary spectral bands,” Opt. Lett. 30, 1641–1643 (2005). [CrossRef]
  4. H. Fujii, T. Asakura, K. Nohira, Y. Shintomi, and T. Ohura, “Blood flow observed by time varying speckle,” Opt. Lett. 10, 104–106 (1985). [CrossRef]
  5. I. Passoni, A. Dai Pra, H. Rabal, M. Trivi, and R. Arizaga, “Dynamic speckle processing using wavelets based entropy,” Opt. Commun. 246, 219–228 (2005). [CrossRef]
  6. A. Dai Pra, I. Passoni, and H. Rabal, “Evaluation of laser dynamic speckle signals applying granular computing,” Signal Process. 89, 266–274 (2009). [CrossRef]
  7. E. Blotta, V. Ballarin, and H. Rabal, “Decomposition of biospeckle signals through granulometric size distribution,” Opt. Lett. 34, 1201–1203 (2009). [CrossRef]
  8. I. Passoni, H. Rabal, and C. Arizmendi, “Characterizing dynamic speckle time series with the Hurst coefficient concept,” Fractals 12, 319–329 (2004). [CrossRef]
  9. G. H. Sendra, H. Rabal, R. Arizaga, and M. Trivi, “Vortex analysis in dynamic speckle images,” J. Opt. Soc. Am. A 26, 2634–2639 (2009). [CrossRef]
  10. H. Rabal, R. Arizaga, N. Cap, M. Trivi, G. Romero, and E. Alanís, “Transient phenomena analysis using dynamic speckle patterns,” Opt. Eng. 35, 57–62 (1996). [CrossRef]
  11. G. Romero, E. Alanis, and H. Rabal, “Statistics of the dynamic speckle produced by a rotating diffuser and its application to the assessment of paint drying,” Opt. Eng. 39, 1652–1658 (2000). [CrossRef]
  12. M. Pajuelo, G. Baldwin, R. Arizaga, N. Cap, H. Rabal, and M. Trivi, “Bio-speckle assessment of bruising in fruits,” Opt. Lasers Eng. 40, 13–24 (2003). [CrossRef]
  13. A. Federico and G. Kaufmann, “Evaluation of dynamic speckle activity using the empirical mode decomposition method,” Opt. Commun. 267, 287–294 (2006). [CrossRef]
  14. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): a nonscanning full field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996). [CrossRef]
  15. G. H. Sendra, A. L. Dai Pra, L. I. Passoni, R. Arizaga, H. J. Rabal, and M. Triv, “Biospeckle descriptors: a performance comparison,” Proc. SPIE 7387, 73871K (2010). [CrossRef]
  16. H. Z. Cummins and H. L. Swinney, “Light beating spectroscopy,” in Vol. 8 of Progress in Optics (North-Holland, 1970), pp. 133–200.
  17. E. Blotta, V. Ballarín, M. Brun, and H. Rabal, “Evaluation of speckle-interferometry descriptors to measuring drying-of-coatings,” Signal Process. 91, 2395–2403 (2011). [CrossRef]
  18. I. Rish, “An empirical study of the naive Bayes classifier,” in RC 22230 IBM Research Report. IBM Research Division (Thomas J. Watson Research Center, Yorktown Heights, NY, 2001).
  19. E. Parzen, “On estimation of a probability function and mode,” Ann. Math. Stat. 33, 1065–1076 (1962). [CrossRef]
  20. R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell. 97, 273–324 (1997). [CrossRef]
  21. M. Stone, “Cross-validatory choice and assessment of statistical predictions,” J. R. Stat. Soc. 36, 111–147 (1974).
  22. S. Murialdo, L. Passoni, M. Guzman, G. Sendra, H. Rabal, M. Trivi, and J. Froilán Gonzalez, “Discrimination of motile bacteria and filamentous fungi using dynamic speckle,” J. Biomed. Opt. 17, 056011 (2012). [CrossRef]
  23. G. Meschino, S. Murialdo, L. Passoni, H. Rabal, and M. Trivi, “Biospeckle image stack process based on artificial neural networks,” in Proceedings of the 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2010), pp. 4056–4059.
  24. M. Guzmán, G. Meschino, A. L. Dai Pra, L. Passoni, H. Rabal, and M. Trivi, “Dynamic laser speckle: decision models with computational intelligence techniques,” Proc. SPIE 7387, 738717 (2010). [CrossRef]
  25. L. I. Passoni, A. L. Dai Pra, A. Scandurra, G. Meschino, C. Weber, M. Guzmán, H. Rabal, and M. Trivi, “Improvements in the visualization of segmented areas of patterns of dynamic laser speckle in advances in self-organizing maps,” in Advances in Intelligent Systems and Computing, P. A. Estévez, J. C. Príncipe, and P. Zegers, eds. (Springer, 2012), pp. 163–171.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited