OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 755–769

Effects of nonlocal plasmons in gapped graphene micro-ribbon array and two-dimensional electron gas on near-field electromagnetic response in the deep subwavelength regime

Danhong Huang, Godfrey Gumbs, and Oleksiy Roslyak  »View Author Affiliations

Applied Optics, Vol. 52, Issue 4, pp. 755-769 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1161 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A self-consistent theory involving Maxwell’s equations and a density-matrix linear-response theory is solved for an electromagnetically coupled doped graphene micro-ribbon array (GMRA) and a quantum well (QW) electron gas sitting at an interface between a half-space of air and another half-space of a doped semiconductor substrate, which supports a surface-plasmon mode in our system. The coupling between a spatially modulated total electromagnetic (EM) field and the electron dynamics in a Dirac-cone of a graphene ribbon, as well as the coupling of the far-field specular and near-field higher-order diffraction modes, are included in the derived electron optical-response function. Full analytical expressions are obtained with nonlocality for the optical-response functions of a two-dimensional electron gas and a graphene layer with an induced bandgap, and are employed in our numerical calculations beyond the long-wavelength limit (Drude model). Both the near-field transmissivity and reflectivity spectra, as well as their dependence on different configurations of our system and on the array period, ribbon width, graphene chemical potential of QW electron gas and bandgap in graphene, are studied. Moreover, the transmitted E-field intensity distribution is calculated to demonstrate its connection to the mixing of specular and diffraction modes of the total EM field. An externally tunable EM coupling among the surface, conventional electron-gas and massless graphene intraband plasmon excitations is discovered and explained. Furthermore, a comparison is made between the dependence of the graphene-plasmon energy on the ribbon’s width and chemical potential in this paper and the recent experimental observation given by [Nat. Nanotechnol. 6, 630 – 634 (2011)] for a GMRA in the terahertz-frequency range.

© 2013 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(230.4205) Optical devices : Multiple quantum well (MQW) modulators

ToC Category:
Optical Devices

Original Manuscript: October 24, 2012
Manuscript Accepted: December 11, 2012
Published: January 30, 2013

Danhong Huang, Godfrey Gumbs, and Oleksiy Roslyak, "Effects of nonlocal plasmons in gapped graphene micro-ribbon array and two-dimensional electron gas on near-field electromagnetic response in the deep subwavelength regime," Appl. Opt. 52, 755-769 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009). [CrossRef]
  2. Special issue on “Electronic and photonic properties of graphene layers and carbon nanoribbons,” (Edited by G. Gumbs, D. H. Huang, and O. Roslyak) Philos. Trans. R. Soc. London, Ser. A138, 1932 (2010). [CrossRef]
  3. D. S. L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, “Properties of graphene: a theoretical perspective,” Adv. Phys. 59, 261–482 (2010). [CrossRef]
  4. M. Orlita and M. Potemski, “Dirac electronic states in graphene systems: optical spectroscopy studies,” Semicond. Sci. Technol. 25, 063001 (2010). [CrossRef]
  5. S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in two-dimensional graphene,” Rev. Mod. Phys. 83, 407–470 (2011). [CrossRef]
  6. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef]
  7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005). [CrossRef]
  8. Y. Zhang, Y. W. Tan, H. L. Störmer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005). [CrossRef]
  9. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene,” Nat. Phys. 2, 620–625 (2006). [CrossRef]
  10. A. F. Young and P. Kim, “Quantum interference and Klein tunnelling in graphene,” Nat. Phys. 5, 222–226 (2009). [CrossRef]
  11. O. Roslyak, A. Iurov, G. Gumbs, and D. H. Huang, “Unimpeded tunneling in graphene nanoribbons,” J. Phys. Condens. Matter 22, 165301 (2010). [CrossRef]
  12. A. Iurov, G. Gumbs, O. Roslyak, and D. H. Huang, “Anomalous photon-assisted tunneling in graphene,” J. Phys. Condens. Matter 24, 015303 (2012). [CrossRef]
  13. B. Wunsch, T. Stauber, F. Sols, and F. Guinea, “Dynamical polarization of graphene at finite doping,” New J. Phys. 8, 318 (2006). [CrossRef]
  14. E. H. Wang and S. Das Sarma, “Dielectric function, screening, and plasmons in two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007). [CrossRef]
  15. O. Roslyak, G. Gumbs, and D. H. Huang, “Plasma excitations of dressed Dirac electrons in graphene layers,” J. Appl. Phys. 109, 113721 (2011). [CrossRef]
  16. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101, 196405 (2008). [CrossRef]
  17. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320, 1308 (2008). [CrossRef]
  18. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011). [CrossRef]
  19. Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Störmer, and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,” Nat. Phys. 4, 532–535 (2008). [CrossRef]
  20. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science 320, 206–209 (2008). [CrossRef]
  21. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Haley, Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5, 411–415 (2011). [CrossRef]
  22. J. H. Strait, H. Wang, S. Shivaraman, V. Shields, M. Spencer, and F. Rana, “Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy,” Nano Lett. 11, 4902–4906 (2011). [CrossRef]
  23. J. C. W. Song, M. S. Rudner, C. M. Marcus, and L. S. Levitov, “Hot carrier transport and photocurrent response in graphene,” Nano Lett. 11, 4688–4692 (2011). [CrossRef]
  24. O. Roslyak, G. Gumbs, and D. H. Huang, “Tunable band structure effects on ballistic transport in graphene nanoribbons,” Phys. Lett. A 374, 4061–4064 (2010). [CrossRef]
  25. D. H. Huang, G. Gumbs, and O. Roslyak, “Field enhanced mobility by nonlinear phonon scattering of Dirac electrons in semiconducting graphene nanoribbons,” Phys. Rev. B 83, 115405 (2011). [CrossRef]
  26. O. Roslyak, G. Gumbs, and D. H. Huang, “Energy loss spectroscopy of epitaxial versus free-standing multilayer graphene,” Phys. E 44, 1874–1884 (2012). [CrossRef]
  27. J. Z. Bernád, M. Jääskeläinen, and U. Zülicke, “Effects of a quantum measurement on the electric conductivity: application to graphene,” Phys. Rev. B 81, 073403 (2010). [CrossRef]
  28. K. Nomura and A. H. MacDonald, “Quantum Hall ferromagnetism in graphene,” Phys. Rev. Lett. 96, 256602 (2006). [CrossRef]
  29. T. Fang, A. Konar, H. Xing, and D. Jena, “Mobility in semiconducting graphene nanoribbons: phonon, impurity, and edge roughness scattering,” Phys. Rev. B 78, 205403 (2008). [CrossRef]
  30. A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, “Observation of plasmarons in quasi-freestanding doped graphene,” Science 328, 999–1002 (2010). [CrossRef]
  31. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99, 016803 (2007). [CrossRef]
  32. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009). [CrossRef]
  33. G. Gumbs and D. H. Huang, Properties of Interacting Low-Dimensional Systems (Wiley, 2011), Chaps. 4 and 5.
  34. D. H. Huang, C. Rhodes, P. M. Alsing, and D. A. Cardimona, “Effects of longitudinal field on transmitted near field in doped semi-infinite semiconductors with a surface conducting sheet,” J. Appl. Phys. 100, 113711 (2006). [CrossRef]
  35. D. H. Huang, G. Gumbs, P. M. Alsing, and D. A. Cardimona, “Nonlocal mode mixing and surface-plasmon-polariton-mediated enhancement of diffracted terahertz fields by a conductive grating,” Phys. Rev. B 77, 165404 (2008). [CrossRef]
  36. D. H. Huang, G. Gumbs, and S. Y. Lin, “Self-consistent theory for near-field distribution and spectrum with quantum wires and a conductive grating in terahertz regime,” J. Appl. Phys. 105, 093715 (2009). [CrossRef]
  37. D. H. Huang and D. A. Cardimona, “Effects of off-diagonal radiative-decay coupling of electron transitions in resonant double quantum wells,” Phys. Rev. A 64, 013822 (2001). [CrossRef]
  38. D. H. Huang, T. Apostolova, P. M. Alsing, and D. A. Cardimona, “High-field transport of electrons and radiative effects using coupled force-balance and Fokker–Planck equations beyond relaxation-time approximation,” Phys. Rev. B 69, 075214 (2004). [CrossRef]
  39. D. H. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona, “Effect of photon-assisted absorption on the thermodynamics of hot electrons interacting with an intense optical field in bulk GaAs,” Phys. Rev. B 71, 045204 (2005). [CrossRef]
  40. D. H. Huang, P. M. Alsing, T. Apostolova, and D. A. Cardimona, “Coupled energy-drift and force-balance equations for high-field hot-carrier transport,” Phys. Rev. B 71, 195205 (2005). [CrossRef]
  41. P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic, 1973).
  42. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon polaritons,” Rep. Prog. Phys. 70, 1–87 (2007). [CrossRef]
  43. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  44. G. Gumbs, D. H. Huang, and D. N. Talwar, “Doublet structure in the absorption coefficient for tunneling-split intersubband transitions in double quantum wells,” Phys. Rev. B 53, 15436–15439 (1996). [CrossRef]
  45. L. Brey and H. A. Fertig, “Elementary electronic excitations in graphene nanoribbons,” Phys. Rev. B 75, 125434 (2007). [CrossRef]
  46. F. Stern, “Polarizability of a two-dimensional electron gas,” Phys. Rev. Lett 18, 546–548 (1967). [CrossRef]
  47. M. A. H. Vozmediano and F. Guinea, “Effect of Coulomb interactions on the physical observables of graphene,” Phys. Scr. T146, 014015 (2012). [CrossRef]
  48. D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, and A. K. Geim, “Dirac cones reshaped by interaction effects in suspended graphene,” Nat. Phys. 7, 701–704 (2011). [CrossRef]
  49. B. Y. K. Hu, E. H. Hwang, and S. Das Sarma, “Density of states of disordered graphene,” Phys. Rev. B 78, 165411 (2008). [CrossRef]
  50. K. S. Gupta and S. Sen, “Bound states in gapped graphene with impurities: effective low-energy description of short-range interactions,” Phys. Rev. B 78, 205429 (2008). [CrossRef]
  51. B. Baumeier, T. A. Leskova, and A. A. Maradudin, “Transmission of light through a thin metal film with periodically and randomly corrugated surfaces,” J. Opt. A 8, S191–S207 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited