OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 770–774

Suspended hollow core fiber for terahertz wave guiding

Xiaogang Jiang, Daru Chen, and Gufeng Hu  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. 770-774 (2013)
http://dx.doi.org/10.1364/AO.52.000770


View Full Text Article

Enhanced HTML    Acrobat PDF (616 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polymer fiber with a suspended hollow core is proposed as a low-loss terahertz (THz) waveguide. THz guiding mode is formed due to the suspended hollow core and the air inside the suspended hollow core fiber (SHCF). The low-loss property of the SHCF is achieved due to the fact that the air part of the suspended hollow core traps a large portion of mode power of the THz wave. By using a finite-element method, both the SHCF and the suspended solid core fiber (SSCF) are comparatively investigated. The effective indices, mode area, power fraction, relative absorption loss, and mode profile of the SHCF and the SSCF are presented. Simulation results show that the proposed SHCF exhibits better loss property than the SSCF.

© 2013 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(040.2235) Detectors : Far infrared or terahertz
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 5, 2012
Revised Manuscript: December 31, 2012
Manuscript Accepted: January 1, 2013
Published: January 30, 2013

Citation
Xiaogang Jiang, Daru Chen, and Gufeng Hu, "Suspended hollow core fiber for terahertz wave guiding," Appl. Opt. 52, 770-774 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-770


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992). [CrossRef]
  2. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  3. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theor. Tech. 50, 910–928 (2002). [CrossRef]
  4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  5. I. Hosako, N. Sekine, M. Patrashin, S. Saito, K. Fukunaga, Y. Kasai, P. Baron, T. Seta, J. Mendrok, S. Ochiai, and H. Yasuda, “At the dawn of a new era in terahertz technology,” Proc. IEEE 95, 1611–1623 (2007). [CrossRef]
  6. R. Piesiewcz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kurner, “Short-range ultra-broadband terahertz communications: concepts and perspectives,” IEEE Antennas Propag. Mag. 49, 24–39 (2007). [CrossRef]
  7. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, and R. Buttner, “Label-free probing of the binding state of DNA by time-domain terahertz sensing,” Appl. Phys. Lett. 77, 4049–4051 (2000). [CrossRef]
  8. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995). [CrossRef]
  9. Q. Chen, Z. Jiang, G. X. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25, 1122–1124 (2000). [CrossRef]
  10. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with a nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003). [CrossRef]
  11. G. Winnewisser, “Spectroscopy in the terahertz region,” Vib. Spectrosc. 8, 241–253 (1995). [CrossRef]
  12. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001). [CrossRef]
  13. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosive using terahertz pulsed spectroscopic,” Appl. Phys. Lett. 86, 241116–241118 (2005). [CrossRef]
  14. Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymer,” J. Korean Phys. Soc. 49, 513–517 (2006).
  15. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006). [CrossRef]
  16. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009). [CrossRef]
  17. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008). [CrossRef]
  18. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008). [CrossRef]
  19. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010). [CrossRef]
  20. M. Rozé, B. Ung, A. Mazhorova, M. Walther, and M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19, 9127–9138 (2011). [CrossRef]
  21. D. Chen and H. Chen, “A novel low-loss terahertz waveguide: polymer tube,” Opt. Express 18, 3762–3767 (2010). [CrossRef]
  22. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett. 38, 546–547 (2002). [CrossRef]
  23. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10, 341–348 (2002). [CrossRef]
  24. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited