OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 780–785

Very low resistance ZnS/Ag/ZnS/Ag/ZnS nano-multilayer anode for organic light emitting diodes applications

Hamideh Kermani, Hamid Reza Fallah, Morteza Hajimahmoodzadeh, and Seyed Vahid Tabatabaei  »View Author Affiliations

Applied Optics, Vol. 52, Issue 4, pp. 780-785 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (624 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, design and simulation of conductive nanometric multilayer systems are discussed and optimum thickness of Ag and ZnS layers are calculated to reach simultaneously to high transmittance and low sheet resistance. The conductive transparent ZnS/Ag/ZnS/Ag/ZnS (ZAZAZ) nanometric multilayer systems are deposited on glass substrates at room temperature by a thermal evaporation method. The electrical, optical, and structural properties of these multilayers, such as sheet resistance, optical transmittance, and the root-mean-square surface roughness are obtained. High quality nanometric multilayer systems with sheet resistance of 2.7Ω/sq and the optical transmittance of 75.5% are obtained for the ZAZAZ system. Organic light emitting diodes (OLEDs) were fabricated and tested on the ZAZAZ anode. The ZAZAZ multilayer anode based OLED shows the performance comparable to that of the indium-tin oxide anode based OLED.

© 2013 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(310.6860) Thin films : Thin films, optical properties
(310.4165) Thin films : Multilayer design
(310.6805) Thin films : Theory and design
(310.6845) Thin films : Thin film devices and applications
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Thin Films

Original Manuscript: November 27, 2012
Revised Manuscript: December 31, 2012
Manuscript Accepted: January 2, 2013
Published: January 30, 2013

Hamideh Kermani, Hamid Reza Fallah, Morteza Hajimahmoodzadeh, and Seyed Vahid Tabatabaei, "Very low resistance ZnS/Ag/ZnS/Ag/ZnS nano-multilayer anode for organic light emitting diodes applications," Appl. Opt. 52, 780-785 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Song, A. G. Aberle, and J. Xia, “Optimisation of ZnO:Al films by change of sputter gas pressure for solar cell application,” Appl. Surf. Sci. 195, 291–296 (2002). [CrossRef]
  2. K. Fleischer, E. Arca, and I. V. Shvets, “Improving solar cell efficiency with optically optimised TCO layers,” Sol. Energy Mater. Sol. Cells 101, 262–269 (2012). [CrossRef]
  3. J. Park and H. Ham, “Sputter-patterned ITO-based organic light-emitting diodes with leakage current cut-off layers,” Org. Electron. 12, 1872–1878 (2011). [CrossRef]
  4. T. Miyata, T. Hikosaka, and T. Minami, “High sensitivity chlorine gas sensors using multicomponent transparent conducting oxide thin films,” Sens. Actuators B Chem. 69, 16–21 (2000). [CrossRef]
  5. Z. Remes, M. Vanecek, H. M. Yates, P. Evans, and D. W. Sheel, “Optical properties of SnO2:F films deposited by atmospheric pressure CVD,” Thin Solid Films 517, 6287–6289 (2009). [CrossRef]
  6. S. H. Kim, N. M. Park, T. Y. Kim, and G. Sung, “Electrical and optical characteristics of ITO films by pulsed laser deposition using a 10 wt. % SnO2-doped In2O3 ceramic target,” Thin Solid Films 475, 262–266 (2005). [CrossRef]
  7. T. W. Kim, D. C. Choo, Y. S. No, W. K. Choi, and E. H. Choi, “High work function of Al-doped zinc-oxide thin films as transparent conductive anodes in organic light-emitting devices,” Appl. Surf. Sci. 253, 1917–1920 (2006). [CrossRef]
  8. C. M. Maghanga, J. Jensen, G. A. Niklasson, C. G. Granqvist, and M. Mwamburi, “Transparent and conducting TiO2:Nb films made by sputter deposition: Application to spectrally selective solar reflectors,” Sol. Energy Mater. Sol. Cells 94, 75–79 (2010). [CrossRef]
  9. E. Nam, Y. H. Kang, D. Jung, and Y. S. Kim, “Anode material properties of Ga-doped ZnO thin films by pulsed DC magnetron sputtering method for organic light emitting diodes,” Thin Solid Films 518, 6245–6248 (2010). [CrossRef]
  10. N. Yamada, T. Hitosugi, N. L. H. Hoang, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Structural, electrical and optical properties of sputter-deposited Nb-doped TiO2 (TNO) polycrystalline films,” Thin Solid Films 516, 5754–5757 (2008). [CrossRef]
  11. H. C. Lee and O. Ok Park, “Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering,” Vacuum 75, 275–282 (2004). [CrossRef]
  12. G. F. Wang, X. M. Tao, and R. X. Wang, “Flexible organic light-emitting diodes with a polymeric nanocomposite anode,” Nanotechnology 19, 145201 (2008). [CrossRef]
  13. D. S. Ghosh, T. L. Chen, N. Formica, J. Hwang, I. Bruder, and V. Pruneri, “High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics,” Sol. Energy Mater. Sol. Cells 107, 338–343 (2012). [CrossRef]
  14. H. K. Park, J. W. Kang, S. I. Na, D. Y. Kim, and H. K. Kim, “Characteristics of indium-free GZO/Ag/GZO and AZO/Ag/AZO multilayer electrode grown by dual target DC sputtering at room temperature for low-cost organic photovoltaics,” Sol. Energy Mater. Sol. Cells 93, 1994–2002 (2009). [CrossRef]
  15. D. R. Sahu and J. L. Huang, “The properties of ZnO/Cu/ZnO multilayer films before and after annealing in the different atmosphere,” Thin Solid Films 516, 208–211 (2007). [CrossRef]
  16. T. Dimopoulos, G. Z. Radnoczi, B. Pecz, and H. Bruckl, “Characterization of ZnO: Al/Au/ZnO: Al trilayers for high performance transparent conducting electrodes,” Thin Solid Films 519, 1470–1474 (2010). [CrossRef]
  17. M. Neghabi, A. Behjat, S. M. B. Ghorashi, and S. M. A. Salehi, “The effect of annealing on structural, electrical and optical properties of nanostructured ZnS/Ag/ZnS films,” Thin Solid Films 519, 5662–5666 (2011). [CrossRef]
  18. Z. Yu, J. Leng, W. Xue, T. Zhang, Y. Jiang, J. Zhang, and D. Zhang, “Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition,” Appl. Surf. Sci. 258, 2270–2274 (2012). [CrossRef]
  19. H. Pang, Y. Yuan, Y. Zhou, J. Lian, L. Cao, J. Zhang, and X. Zhou, “ZnS/Ag/ZnS coating as transparent anode for organic light emitting diodes,” J. Lumin. 122, 587–589 (2007). [CrossRef]
  20. S. M. Lee, C. S. Choi, K. C. Choi, and H. C. Lee, “Low resistive transparent and flexible ZnO/Ag/ZnO/Ag/WO3 electrode for organic light-emitting diodes,” Org. Electron. 13, 1654–1659 (2012). [CrossRef]
  21. G. Frank, E. Kauer, and H. Kostlin, “Transparent heat-reflecting coatings based on highly doped semiconductors,” Thin Solid Films 77, 107–118 (1981). [CrossRef]
  22. G. Leftheriotis, S. Papaefthimiou, and P. Yianoulis, “Development of multilayer transparent conductive coatings,” Solid State Ionics 136, 655–661 (2000). [CrossRef]
  23. X. Liu, X. Cai, and J. Mao, “The design of ZnS/Ag/ZnS transparent conductive multilayer films,” Thin Solid Films 441, 200–206 (2003). [CrossRef]
  24. G. Haacke, “New figure of merit for transparent conductors,” J. Appl. Phys. 47, 4086–4089 (1976). [CrossRef]
  25. H. Cho, C. Yun, J. W. Park, and S. Yoo, “Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes,” Org. Electron. 10, 1163–1169 (2009). [CrossRef]
  26. M. Zadsar, H. R. Fallah, M. H. Mahmoodzadeh, and S. V. Tabatabaei, “The effect of Ag layer thickness on the properties of WO3/Ag/MoO3 multilayer films as anode in organic light emitting diodes,” J. Lumin. 132, 992–997 (2012). [CrossRef]
  27. T. Schuler and M. A. Aegerter, “Optical, electrical and structural properties of sol gel ZnO:Al coatings,” Thin Solid Films 351, 125–131 (1999). [CrossRef]
  28. X. Sun, Y. Shi, H. Ji, X. Li, S. Cai, and C. Zheng, “Nanocasting synthesis of ordered mesoporous indium tin oxide (ITO) materials with controllable particle size and high thermal stability,” J. Alloys Compd. 545, 5–11 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited