OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 786–794

Oceanographic lidar profiles compared with estimates from in situ optical measurements

Jennifer H. Lee, James H. Churnside, Richard D. Marchbanks, Percy L. Donaghay, and James M. Sullivan  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. 786-794 (2013)
http://dx.doi.org/10.1364/AO.52.000786


View Full Text Article

Enhanced HTML    Acrobat PDF (787 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Oceanographic lidar profiles measured in an aerial survey were compared with in situ measurements of water optical properties made from a surface vessel. Experimental data were collected over a two-week period in May 2010 in East Sound, Washington. Measured absorption and backscatter coefficients were used with the volume-scattering function in a quasi-single-scattering model to simulate an idealized lidar return, and this was convolved with the measured instrument response to accurately reproduce the measured temporal behavior. Linear depth-dependent depolarization from the water column and localized depolarization from scattering layers are varied to fine tune the simulated lidar return. Sixty in situ measurements of optical properties were correlated with nearly collocated and coincident lidar profiles; our model yielded good matches (±3dB to a depth of 12 m) between simulated and measured lidar profiles for both uniform and stratified waters. Measured attenuation was slightly higher (5%) than diffuse attenuation for the copolarized channel and slightly lower (8%) for the cross-polarized channel.

© 2013 Optical Society of America

OCIS Codes
(010.3640) Atmospheric and oceanic optics : Lidar
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(010.4455) Atmospheric and oceanic optics : Oceanic propagation
(010.4458) Atmospheric and oceanic optics : Oceanic scattering

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: July 30, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 7, 2012
Published: February 1, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Jennifer H. Lee, James H. Churnside, Richard D. Marchbanks, Percy L. Donaghay, and James M. Sullivan, "Oceanographic lidar profiles compared with estimates from in situ optical measurements," Appl. Opt. 52, 786-794 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-786


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, and R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988). [CrossRef]
  2. A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, “Airborne polarized lidar detection of scattering layers in the ocean,” Appl. Opt. 40, 4353–4364 (2001). [CrossRef]
  3. J. H. Churnside and P. L. Donaghay, “Thin scattering layers observed by airborne lidar,” ICES J. Mar. Sci. 66, 778–789 (2009). [CrossRef]
  4. J. H. Churnside and J. J. Wilson, “Airborne lidar for fisheries applications,” Opt. Eng. 40, 406–414 (2001). [CrossRef]
  5. E. D. Brown, J. H. Churnside, R. L. Collins, T. Veenstra, J. J. Wilson, and K. Abnett, “Remote sensing of capelin and other biological features in the North Pacific using lidar and video technology,” ICES J. Mar. Sci. 59, 1120–1130 (2002). [CrossRef]
  6. J. H. Churnside, D. A. Demer, and B. Mahmoudi, “A comparison of lidar and echosounder measurements of fish schools in the Gulf of Mexico,” ICES J. Mar. Sci. 60, 147–154 (2003). [CrossRef]
  7. P. Carrera, J. H. Churnside, G. Boyra, V. Marques, C. Scalabrin, and A. Uriarte, “Comparison of airborne lidar with echosounders: a case study in the coastal Atlantic waters of southern Europe,” ICES J. Mar. Sci. 63, 1736–1750 (2006). [CrossRef]
  8. J. H. Churnside, D. A. Demer, D. Griffith, R. L. Emmett, and R. D. Brodeur, “Comparisons of lidar, acoustic and trawl data on two scales in the Northeast Pacific Ocean,” California Cooperative Oceanic Fisheries Investigations Reports50, 118–122 (2009).
  9. J. H. Churnside, A. F. Sharov, and R. A. Richter, “Aerial surveys of fish in estuaries: a case study in Chesapeake Bay,” ICES J. Mar. Sci. 68, 239–244 (2011). [CrossRef]
  10. J. H. Churnside and R. E. Thorne, “Comparison of airborne lidar measurements with 420 kHz echo-sounder measurements of zooplankton,” Appl. Opt. 44, 5504–5511 (2005). [CrossRef]
  11. C.-K. Wang and W. D. Philpot, “Using airborne bathymetric lidar to detect bottom type variation in shallow waters,” Remote Sens. Environ. 106, 123–135 (2007). [CrossRef]
  12. R. C. Hilldale and D. Raff, “Assessing the ability of airborne LiDAR to map river bathymetry,” Earth Surf. Processes Landforms 33, 773–783 (2008). [CrossRef]
  13. L. M. Wedding, A. M. Friedlander, M. McGranaghan, R. S. Yost, and M. E. Monaco, “Using bathymetric lidar to define nearshore benthic habitat complexity: implications for management of reef fish assemblages in Hawaii,” Remote Sens. Environ. 112, 4159–4165 (2008). [CrossRef]
  14. C.-K. Wang, W. Philpot, M. Kim, and H.-M. Lei, “A Monte Carlo study of the seagrass-induced depth bias in bathymetric lidar,” Opt. Express 19, 7230–7243 (2011). [CrossRef]
  15. J. H. Churnside and L. A. Ostrovsky, “Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska,” Int. J. Remote Sens. 26, 167–177 (2005). [CrossRef]
  16. H. R. Gordon, “Interpretation of airborne oceanic lidar: effects of multiple scattering,” Appl. Opt. 21, 2996–3001 (1982). [CrossRef]
  17. G. M. Krekov, M. M. Krekova, and V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. I. Effect of the atmosphere and wind-driven sea waves,” Appl. Opt. 37, 1589–1595 (1998). [CrossRef]
  18. G. M. Krekov, M. M. Krekova, and V. S. Shamanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals,” Appl. Opt. 37, 1596–1601(1998). [CrossRef]
  19. I. L. Katsev, E. P. Zege, A. S. Prikhach, and I. N. Polonsky, “Efficient technique to determine backscattered light power for various atmospheric and oceanic sounding and imaging systems,” J. Opt. Soc. Am. A 14, 1338–1346 (1997). [CrossRef]
  20. K. Mitra and J. H. Churnside, “Transient radiative transfer equation applied to oceanographic lidar,” Appl. Opt. 38, 889–895 (1999). [CrossRef]
  21. J. H. Churnside, “Polarization effects on oceanographic lidar,” Opt. Express 16, 1196–1207 (2008). [CrossRef]
  22. J. H. Churnside, V. V. Tatarskii, and J. J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured from a ship in the Southern California bight,” Appl. Opt. 37, 3105–3112 (1998). [CrossRef]
  23. M. A. McManus, A. L. Alldredge, A. H. Barnard, E. Boss, J. F. Case, T. J. Cowles, P. L. Donaghay, L. B. Eisner, D. J. Gifford, C. F. Greenlaw, C. M. Herren, D. V. Holliday, D. Johnson, S. MacIntyre, D. M. McGehee, T. R. Osborn, M. J. Perry, R. E. Pieper, J. E. B. Rines, D. C. Smith, J. M. Sullivan, M. K. Talbot, M. S. Twardowski, A. Weidemann, and J. R. Zaneveld, “Characteristics, distribution and persistence of thin layers over a 48 hour period,” Mar. Ecol. Prog. Ser. 261, 1–19 (2003). [CrossRef]
  24. J. E. B. Rines, P. L. Donaghay, M. M. Dekshenieks, J. M. Sullivan, and M. S. Twardowski, “Thin layers and camouflage: hidden Pseudo-nitzschia spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA,” Mar. Ecol. Prog. Ser. 225, 123–137 (2002). [CrossRef]
  25. A. L. Alldredge, T. J. Cowles, S. MacIntyre, J. E. B. Rines, P. L. Donaghay, C. F. Greenlaw, D. V. Holliday, J. M. S. Margaret, M. Dekshenieks, and J. R. V. Zaneveld, “Occurrence and mechanisms of formation of a dramatic thin layer of marine snow in a shallow Pacific fjord,” Mar. Ecol. Prog. Ser. 233, 1–12 (2002). [CrossRef]
  26. H. M. Zorn, J. H. Churnside, and C. W. Oliver, “Laser safety thresholds for cetations and pinnipeds,” Mar. Mammal Sci. 16, 186–200 (2000). [CrossRef]
  27. M. S. Twardowski, J. M. Sullivan, P. L. Donaghay, and J. R. Zaneveld, “Microscale quantification of the absorption by dissolved and particulate material in coastal waters with an ac-9,” J. Atmos. Ocean. Technol. 16, 691–707 (1999). [CrossRef]
  28. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400–750 nm spectral range,” Appl. Opt. 45, 5294–5309 (2006). [CrossRef]
  29. J. R. Zaneveld, J. C. Kitchen, and C. C. Moore, “Scattering error correction of reflecting-tube absorption meters,” Proc. SPIE 2258, 44 (1994). [CrossRef]
  30. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997). [CrossRef]
  31. Z.-P. Lee, K.-P. Du, and R. Arnone, “A model for the diffuse attenuation coefficient of downwelling irradiance,” J. Geophys. Res. 110, C02016 (2005). [CrossRef]
  32. Z.-P. Lee, M. Darecki, K. L. Carder, C. O. Davis, D. Stramski, and W. J. Rhea, “Diffuse attenuation of downwelling irradiance: an evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005). [CrossRef]
  33. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009). [CrossRef]
  34. J. M. Sullivan, P. L. Donaghay, and J. E. B. Rines, “Coastal thin layer dynamics: consequences to biology and optics,” Cont. Shelf Res. 30, 50–65 (2010). [CrossRef]
  35. C. R. Thomas, Identifying Marine Phytoplankton (Academic, 1997), p. 858.
  36. C. M. R. Platt, “Lidar and radioimetric observations of cirrus clouds,” J. Atmos. Sci. 30, 1191–1204 (1973).
  37. Y. Takano and K.-N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989). [CrossRef]
  38. P. Chýlek, G. B. Lesins, G. Videen, J. G. D. Wong, R. G. Pinnick, D. Ngo, and J. D. Klett, “Black carbon and absorption of solar radiation by clouds,” J. Geophys. Res. 101, 23365–23371 (1996). [CrossRef]
  39. K. E. Kunkel and J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1781 (1976). [CrossRef]
  40. C. M. R. Platt, “Remote sounding of high clouds. III: Monte Carlo calculations of multiple-scattered lidar returns,” J. Atmos. Sci. 38, 156–167 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited