OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 849–853

Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask

P. Suresh, C. Mariyal, K. B. Rajesh, T. V. S. Pillai, and Z. Jaroszewicz  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. 849-853 (2013)
http://dx.doi.org/10.1364/AO.52.000849


View Full Text Article

Enhanced HTML    Acrobat PDF (570 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical approach to generate a nondiffracting beam with extended depth of focus (DOF) and a smaller focal spot along the optical axis, by tight focusing of an azimuthally polarized beam with a circular symmetrical binary phase mask and an interference effect over a high-numerical-aperture (NA) lens axicon system. We find a general azimuthal diffraction integral for the circularly symmetric binary phase mask and examine it in two special cases: a high-NA lens and a high-NA lens axicon. The azimuthally polarized beam remains well behaved in both cases. We verify that the longitudinal component generated by azimuthally polarized illumination produces the narrowest spot size for a wide range of geometries. Finally, we discuss the effects of tight focusing on a dielectric interface and provide some ideas for circumventing the effects of the binary phase mask interface and even utilize them for spot size reduction.

© 2013 Optical Society of America

OCIS Codes
(210.0210) Optical data storage : Optical data storage
(260.0260) Physical optics : Physical optics
(260.1960) Physical optics : Diffraction theory
(260.5430) Physical optics : Polarization

ToC Category:
Optical Design and Fabrication

History
Original Manuscript: October 1, 2012
Manuscript Accepted: January 3, 2013
Published: February 1, 2013

Citation
P. Suresh, C. Mariyal, K. B. Rajesh, T. V. S. Pillai, and Z. Jaroszewicz, "Generation of a strong uniform transversely polarized nondiffracting beam using a high-numerical-aperture lens axicon with a binary phase mask," Appl. Opt. 52, 849-853 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-849


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. F. Wang, L. P. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501–505 (2008). [CrossRef]
  2. H. F. Wang, L. P. Shi, G. Q. Yuan, X. S. Miao, W. L. Tan, and C. T. Chong, “Subwavelength and super-resolution nondiffraction beam,” Appl. Phys. Lett. 89, 171102 (2006). [CrossRef]
  3. C. C. Sun and C. K. Liu, “Ultrasmall focusing spot with a long depth of focus based on polarization and phase modulation,” Opt. Lett. 28, 99–101 (2003). [CrossRef]
  4. M. Erdelyi, Z. L. Horvath, G. Szabo, Z. Bor, F. K. Tittel, J. R. Cavallaro, and M. C. Smayling, “Generation of diffraction-free beams for applications in optical microlithography,” J. Vac. Sci. Technol. B 15, 287–292 (1997). [CrossRef]
  5. L. B. Liu, C. Liu, W. C. Howe, C. J. R. Sheppard, and N. G. Chen, “Binary-phase spatial filter for real-time swept-source optical coherence microscopy,” Opt. Lett. 32, 2375–2377 (2007). [CrossRef]
  6. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006). [CrossRef]
  7. Q. Q. Zhang, J. G. Wang, M. W. Wang, J. Bu, S. W. Zhu, R. Wang, B. Z. Gao, and X.-C. Yuan, “A modified fractal zone plate with extended depth of focus in spectral domain optical coherence tomography,” J. Opt. 13, 055301 (2011). [CrossRef]
  8. L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41, 3727–3732 (1990). [CrossRef]
  9. J. R. Fontana and R. H. Pantell, “A high-energy laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54, 4285–4288 (1983). [CrossRef]
  10. R. D. Romea and W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser beam focusing,” Phys. Rev. D 42, 1807–1818 (1990). [CrossRef]
  11. J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74, 2467–2470 (1995). [CrossRef]
  12. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef]
  13. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef]
  14. D. P. Biss and T. G. Brown, “Polarization-vortex-driven second-harmonic generation,” Opt. Lett. 28, 923–925(2003). [CrossRef]
  15. E. Y. S. Yew and C. J. R. Sheppard, “Second-harmonic generation polarization microscopy with radially and azimuthally polarized beams,” Opt. Commun. 275, 453–457 (2007). [CrossRef]
  16. N. Hayazawa, Y. Saito, and S. Kawata, “Detection and characterization of longitudinal field for tip-enhanced Raman spectroscopy,” Appl. Phys. Lett. 85, 6239–6241 (2004). [CrossRef]
  17. C. J. R. Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution,” Appl. Opt. 43, 4322–4327 (2004). [CrossRef]
  18. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32, 1468–1470 (2007). [CrossRef]
  19. C. J. R. Sheppard, “High-aperture beams,” J. Opt. Soc. Am. A 18, 1579–1587 (2001). [CrossRef]
  20. R. Dorn, S. Quabis, and G. Leuchs, “The focus of light-linear polarization breaks the rotational symmetry of the focal spot,” J. Mod. Opt. 50, 1917–1928 (2003).
  21. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592 (1954). [CrossRef]
  22. N. Davidson, A. A. Friesem, and E. Hasman, “Holographic axilens: high resolution and long focal depth,” Opt. Lett. 16, 523–525 (1991). [CrossRef]
  23. M. A. Golub, V. Shurman, and I. Grossinger, “Extended focus diffractive optical element for Gaussian laser beams,” Appl. Opt. 45, 144–150 (2006). [CrossRef]
  24. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef]
  25. G. H. Yuan, S. B. Wei, and X.-C. Yuan, “Nondiffracting transversally polarized beam,” Opt. Lett. 36, 3479–3481 (2011). [CrossRef]
  26. K. B. Rajesh and P. M. Anbarasan, “Generation of sub-wavelength and super-resolution longitudinally polarized non-diffraction beam using lens axicon,” Chin. Opt. Lett. 6, 785–787 (2008). [CrossRef]
  27. K. B. Rajesh, Z. Jaroszewicz, and P. M. Anbarasan, “Improvement of lens axicon’s performance for longitudinally polarized beam generation by adding a dedicated phase transmittance,” Opt. Express 18, 26799–26805 (2010). [CrossRef]
  28. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190–193 (1965). [CrossRef]
  29. Z. Jaroszewicz and J. Morales, “Lens axicons: systems composed of a diverging aberrated lens and a perfect converging lens,” J. Opt. Soc. Am. A 15, 2383–2390 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited