OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: 854–861

Analysis of interference between two optical beams in a quasi-zero electric permittivity photonic crystal superlattice

Ziyuan Li and Haroldo T. Hattori  »View Author Affiliations


Applied Optics, Vol. 52, Issue 4, pp. 854-861 (2013)
http://dx.doi.org/10.1364/AO.52.000854


View Full Text Article

Enhanced HTML    Acrobat PDF (1454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A quasi-zero-average-index photonic crystal structure has been recently demonstrated by using the concept of complementary media. It consists of dielectric photonic crystal superlattices with alternating layers of negative index photonic crystals and positive index dielectric media. This photonic crystal structure has unique optical properties, such as phase-invariant field and self-collimation of light. In particular, the nanofabricated superlattices can be used in chip-scale optical interconnects and interferometers with quasi-zero-average phase difference. However, in potential interconnect applications, crosstalk between neighboring signals needs to be avoided. In this article, we study simulations of the interference of propagating electromagnetic waves in a quasi-zero electric permittivity photonic crystal superlattice. The simulations here are restricted to TM modes, with the main electric field along the vertical direction.

© 2013 Optical Society of America

OCIS Codes
(260.3160) Physical optics : Interference
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:
Integrated Optics

History
Original Manuscript: November 9, 2012
Revised Manuscript: January 7, 2013
Manuscript Accepted: January 8, 2013
Published: February 1, 2013

Citation
Ziyuan Li and Haroldo T. Hattori, "Analysis of interference between two optical beams in a quasi-zero electric permittivity photonic crystal superlattice," Appl. Opt. 52, 854-861 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-4-854


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, 2009).
  2. M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic bandgap,” Phys. Rev. B 62, 10696–10705 (2000). [CrossRef]
  3. R. Chatterjee, N. C. Panoiu, K. Liu, Z. Dios, M. B. Yu, M. T. Doan, L. J. Kaufman, R. M. Osgood, and C. W. Wong, “Achieving subdiffraction imaging through bound surface states in negative refraction photonic crystals in the near-infrared range,” Phys. Rev. Lett. 100, 187401 (2008). [CrossRef]
  4. S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic wave propagation in two-dimensional photonic crystals: a study of anomalous refractive effects,” Phys. Rev. B 72, 1–20 (2005). [CrossRef]
  5. S. Fonteinopoulou and C. M. Soukoulis, “Negative refraction and left-handed behavior in two-dimensional photonic crystals,” Phys. Rev. B 67, 1–4 (2003).
  6. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  7. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light(Princeton2008).
  8. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998). [CrossRef]
  9. T. Asano, M. Mochizuki, S. Noda, M. Okano, and M. Imada, “A channel drop filter using a single defect in a 2-D photonic crystal slab: Defect engineering with respect to polarization mode and ratio of emissions from upper and lower sides,” J. Lightwave Technol. 21, 1370–1376 (2003). [CrossRef]
  10. E. Drouard, H. T. Hattori, C. Grillet, A. Kazmierczak, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “Directional channel-drop filter based on a slow Bloch mode photonic crystal waveguide section,” Opt. Express 13, 3037–3048 (2005). [CrossRef]
  11. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic bandgap defect-mode lasers,” Science 284, 1819–1821 (1999). [CrossRef]
  12. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353–1365 (2002). [CrossRef]
  13. N. Yokouchi, A. J. Danner, and K. D. Choquette, “Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,” Appl. Phys. Lett. 82, 3608–3610 (2003). [CrossRef]
  14. S. Kocaman, M. S. Aras, P. Hsieh, J. F. McMillan, C. G. Biris, N. C. Panoiu, M. B. Yu, D. L. Wong, A. Stein, and C. W. Wong, “Zero phase delay in negative-refractive-index photonic crystal superlattices,” Nat. Photonics 5, 499–505 (2011). [CrossRef]
  15. V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index matematerial,” Phys. Rev. Lett. 102, 1–3 (2009). [CrossRef]
  16. S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 1–4 (2009). [CrossRef]
  17. G. D. Caprio, P. Dardano, G. Coppola, S. Cabrini, and V. Mocella, “Digital holographic microscopy characterization of superdirective beam by metamaterial,” Opt. Lett. 37, 1142–1144 (2012). [CrossRef]
  18. V. Mocella, P. Dardano, I. Rendina, and S. Cabrini, “An extraordinary directive radiation based on optical antimatter at near infrared,” Opt. Express 18, 25068–25074 (2010). [CrossRef]
  19. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97, 1–4 (2006). [CrossRef]
  20. L.-G. Wang, G. X. Li, and S. Y. Zhu, “Thermal emission from layered structures containing a negative-zero-positive index metamaterial,” Phys. Rev. B 81, 1–4 (2010). [CrossRef]
  21. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E 70, 1–12 (2004).
  22. N. M. Litchinitiser, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev, and V. M. Shalaev, “Metamaterials: electromagnetic enhancement at zero-index transition,” Opt. Lett. 33, 2350–2352 (2008). [CrossRef]
  23. Fullwave 8.3 RSOFT design group, 2010, http://www.rsoftdesign.com .
  24. Bandsolve 8.3 RSOFT design group, 2010, http://www.rsoftdesign.com .
  25. H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers into plasmonic nano-antennas,” Opt. Express 17, 20878–20884 (2009). [CrossRef]
  26. H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44, 3069–3076 (2005). [CrossRef]
  27. H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. di Cioccio, L. El Melhaoui, and J. M. Fedeli, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express 13, 3310–3322 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited