OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: B40–B45

Fabrication and modeling of multimode fiber lenses

Klaus Bescherer, Dorit Munzke, Oliver Reich, and Hans-Peter Loock  »View Author Affiliations

Applied Optics, Vol. 52, Issue 4, pp. B40-B45 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on the fabrication, modeling, and experimental verification of the emission of fiber lenses fabricated on multimode fibers in different media. Concave fiber lenses with a radius of 150 μm were fabricated onto a multimode silica fiber (100 μm core) by grinding and polishing against a ruby sphere template. In our theoretical model we assume that the fiber guides light from a Lambertian light source and that the emission cone is governed solely by the range of permitted emission angles. We investigate concave and convex lenses at 532 nm with different radii and in a variety of surrounding media from air (n0=1.00) to sapphire (n0=1.77). It was found that noticeable focusing or defocusing effects of a silica fiber lens in ethanol (n0=1.36) and dimethyl sulfoxide (DMSO) (n0=1.48) are only observed when the fiber lens radius was less than the fiber diameter.

© 2013 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(080.3630) Geometric optics : Lenses
(080.1753) Geometric optics : Computation methods

Original Manuscript: September 18, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 6, 2012
Published: January 16, 2013

Klaus Bescherer, Dorit Munzke, Oliver Reich, and Hans-Peter Loock, "Fabrication and modeling of multimode fiber lenses," Appl. Opt. 52, B40-B45 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Kato, “Light coupling from a stripe-geometry GaAs diode laser into an optical fiber with spherical end,” J. Appl. Phys. 44, 2756–2758 (1973). [CrossRef]
  2. U. C. Paek and A. L. Weaver, “Formation of a spherical lens at optical fiber ends with a CO2-laser,” Appl. Opt. 14, 294–298 (1975). [CrossRef]
  3. A. Hokkanen and S. Tammela, “Hemispherically ended optical fiber lenses,” Phys. Scr. T69, 159–162 (1997). [CrossRef]
  4. H. P. Loock, “Ring-down absorption spectroscopy for analytical microdevices,” TrAC Trends Anal. Chem. 25, 655–664 (2006). [CrossRef]
  5. H. Waechter, D. Munzke, A. Jang, and H. P. Loock, “Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy,” Anal. Chem. 83, 2719–2725 (2011). [CrossRef]
  6. S. Yakunin and J. Heitz, “Microgrinding of lensed fibers by means of a scanning-probe microscope setup,” Appl. Opt. 48, 6172–6177 (2009). [CrossRef]
  7. D. R. Rivera, C. M. Brown, D. G. Ouzounov, W. W. Webb, and C. Xu, “Use of a lensed fiber for a large-field-of-view, high-resolution, fiber-scanning microendoscope,” Opt. Lett. 37, 881–883 (2012). [CrossRef]
  8. S. Cabrini, C. Liberale, D. Cojoc, A. Carpentiero, M. Prasciolu, S. Mora, V. Degiorgio, F. De Angelis, and E. Di Fabrizio, “Axicon lens on optical fiber forming optical tweezers, made by focused ion beam milling,” Microelectron. Eng. 83, 804–807 (2006). [CrossRef]
  9. F. Schiappelli, R. Kumar, M. Prasciolu, D. Cojoc, S. Cabrini, M. De Vittorio, G. Visimberga, A. Gerardino, V. Degiorgio, and E. Di Fabrizio, “Efficient fiber-to-waveguide coupling by a lens on the end of the optical fiber fabricated by focused ion beam milling,” Microelectron. Eng. 73–74, 397–404 (2004). [CrossRef]
  10. J. K. Kim, J. Kim, K. Oh, I. B. Sohn, W. Shin, H. Y. Choi, and B. Lee, “Fabrication of micro Fresnel zone plate lens on a mode-expanded hybrid optical fiber using a femtosecond laser ablation system,” IEEE Photonics Technol. Lett. 21, 21–23 (2009). [CrossRef]
  11. Y. L. Yu, L. Lui, H. Tam, and W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photonics Technol. Lett. 13, 702–704 (2001). [CrossRef]
  12. D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012). [CrossRef]
  13. D. M. B. Kunert, T. P. Meyrath, and H. Giessen, “Fabrication of a fiber-based microcavity with spherical concave fiber tips,” Appl. Phys. B 98, 707–710 (2010). [CrossRef]
  14. M. Mayeh and F. Farahi, “Tailoring Gaussian laser beam shape through controlled etching of single-mode and multimode fibers: simulation and experimental studies,” IEEE Sens. J. 12, 168–173 (2012). [CrossRef]
  15. J. Mervis, A. H. Bloom, G. Bravo, L. Mills, F. Zarinetchi, M. Prentiss, and S. P. Smith, “Aligning and attaching a lens to an optical fiber using light pressure force,” Opt. Lett. 18, 325–327 (1993). [CrossRef]
  16. M. Mirkhalaf, V. M. Murukeshan, S. B. Tor, V. K. Shinoj, and K. Sathiyamoorthy, “Characteristics of stand-alone microlenses in fiber-based fluorescence imaging applications,” Rev. Sci. Instrum. 82, 043110 (2011).
  17. A. Mori, T. Horiuchi, M. Mizumachi, S. Seino, T. Nakagawa, and K. Suzuki, “Formation of micro lens by laser polymerization,” Electron. Commun. Jpn. 95, 59–67 (2012). [CrossRef]
  18. W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, J. A. Tatum, and D. L. MacFarlane, “Microjetted lenslet triplet fibers,” Opt. Commun. 123, 492–496 (1996). [CrossRef]
  19. D. M. Hartmann, D. J. Reiley, and S. C. Esener, “Microlenses self-aligned to optical fibers fabricated using the hydrophobic effect,” IEEE Photonics Technol. Lett. 13, 1088–1090 (2001). [CrossRef]
  20. C. A. Brackett, “Efficiency of coupling light from stripe-geometry GaAs lasers into multimode optical fibers,” J. Appl. Phys. 45, 2636–2637 (1974). [CrossRef]
  21. H. Omrani, J. A. Barnes, A. E. Dudelzak, H.-P. Loock, and H. Waechter, “Fluorescence excitation–emission matrix (EEM) spectroscopy and cavity ring-down (CRD) absorption spectroscopy of oil-contaminated jet fuel using fiber-optic probes,” Analyst 137, 2782–2790 (2012). [CrossRef]
  22. D. Munzke, J. Saunders, H. Omrani, O. Reich, and H.-P. Loock, “Modeling of fiber-optic fluorescence probes for strongly absorbing samples,” Appl. Opt. 51, 6343–6351 (2012). [CrossRef]
  23. G. He and F. W. Cuomo, “A light-intensity function suitable for multimode fiberoptic sensors,” J. Lightwave Technol. 9, 545–551 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited