OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 4 — Feb. 1, 2013
  • pp: B60–B69

Terahertz polarization conversion with quartz waveplate sets

Andrey K. Kaveev, Grigory I. Kropotov, Ekaterina V. Tsygankova, Ivan A. Tzibizov, Sergey D. Ganichev, Sergey N. Danilov, Peter Olbrich, Christina Zoth, Elizaveta G. Kaveeva, Alexander I. Zhdanov, Andrey A. Ivanov, Ramil Z. Deyanov, and Britta Redlich  »View Author Affiliations

Applied Optics, Vol. 52, Issue 4, pp. B60-B69 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1116 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the results of calculation and experimental testing of an achromatic polarization converter and a composite terahertz waveplate (WP), which are represented by sets of plane-parallel birefringent plates with in-plane birefringence axis. The calculations took into account the effect of interference, which was especially prominent when plates were separated by an air gap. The possibility of development of a spectrum analyzer design based on a set of WPs is also discussed.

© 2013 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(040.2235) Detectors : Far infrared or terahertz

Original Manuscript: September 12, 2012
Manuscript Accepted: November 30, 2012
Published: January 21, 2013

Andrey K. Kaveev, Grigory I. Kropotov, Ekaterina V. Tsygankova, Ivan A. Tzibizov, Sergey D. Ganichev, Sergey N. Danilov, Peter Olbrich, Christina Zoth, Elizaveta G. Kaveeva, Alexander I. Zhdanov, Andrey A. Ivanov, Ramil Z. Deyanov, and Britta Redlich, "Terahertz polarization conversion with quartz waveplate sets," Appl. Opt. 52, B60-B69 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol. 20, S266–S280 (2005). [CrossRef]
  2. F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. Huhn, G. Spickermann, P. Bolivar, and H. Roskos, “THz active imaging system with real-time capabilities,” IEEE Trans. Terahertz Sci. Technol. 1, 183–200 (2011). [CrossRef]
  3. K. Ajito and Y. Ueno, “THz chemical imaging for biological applications,” IEEE Trans. Terahertz Sci. Technol. 1, 293–300 (2011). [CrossRef]
  4. K. Humphreys, J. Loughran, W. Lanigan, T. Ward, J. Murphy, and C. O’Sullivan, “Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering,” in Proceedings of IEEE 26th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE, 2004), pp. 1302–1305.
  5. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, 2010).
  6. Z. Taylor, R. Singh, D. Bennett, P. Tewari, N. Bajwa, M. Culjat, A. Stojadinovic, H. Lee, J.-P. Hubschman, E. Brown, and W. Grundfest, “THz medical imaging: in vivo hydration sensing,” IEEE Trans. Terahertz Sci. Technol. 1, 201–219 (2011). [CrossRef]
  7. D. Stanze, A. Deninger, A. Roggenbuck, S. Schindler, M. Schlak, and B. Sartorius, “Compact cw terahertz spectrometer pumped at 1.5 μm wavelength,” Int. J. Infrared Millim. Waves 32, 225–232 (2011). [CrossRef]
  8. Z. Popovic, and E. Grossman, “THz metrology and instrumentation,” IEEE Trans. Terahertz Sci. Technol. 1, 133–144 (2011). [CrossRef]
  9. F. Sizov and A. Rogalski, “THz detectors,” Prog. Quantum Electron. 34, 278–347 (2010). [CrossRef]
  10. F. Brehat and B. Wyncke, “Measurement of the optical constants of crystal quartz at 10 K and 300 K in the far infrared spectral range: 10–600  cm−1,” Int. J. Infrared Millim. Waves 18, 1663–1679 (1997). [CrossRef]
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Mir, 1987).
  12. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31, 265–267 (2006). [CrossRef]
  13. G. Savini, G. Pisano, and P. Ade, “Achromatic half-wave plate for submillimeter instruments in cosmic microwave background astronomy: modeling and simulation,” Appl. Opt. 45, 8907–8915 (2006). [CrossRef]
  14. S. Pancharatnam, “Achromatic combination of birefringent plates,” Proc. Ind. Ac. Sci. XLI, 130–144 (1955).
  15. J. Ma, J.-S. Wang, C. Denker, and H.-M. Wang, “Optical design of multilayer achromatic waveplate by simulated annealing algorithm,” Chin. J. Astrophys. 8, 349–361 (2008). [CrossRef]
  16. G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010). [CrossRef]
  17. R. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–503 (1941). [CrossRef]
  18. W. Press, W. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C. The Art of Scientific Computing(Cambridge University, 1997).
  19. P. Schneider, J. Kainz, S. D. Ganichev, V. V. Bel’kov, S. N. Danilov, M. M. Glazov, L. E. Golub, U. Roessler, W. Wegscheider, D. Weiss, D. Schuh, and W. Prettl, “Spin relaxation times of 2D holes from spin sensitive bleaching of inter-subband absorption,” J. Appl. Phys. 96, 420–433 (2004). [CrossRef]
  20. Z. D. Kvon, S. N. Danilov, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, “Cyclotron resonance photoconductivity of a two-dimensional electron gas in HgTe quantum wells,” Phys. E 40, 1885–1887 (2008). [CrossRef]
  21. S. D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford University, 2006).
  22. D. Oepts, A. F. G. van der Meer, and P. W. van Amersfoort, “The free-electron-laser user facility FELIX,” Infrared Phys. Technol. 36, 297–308 (1995). [CrossRef]
  23. S. N. Danilov, B. Wittmann, P. Olbrich, W. Eder, W. Prettl, L. E. Golub, E. V. Beregulin, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, V. A. Shalygin, N. Q. Vinh, A. F. G. van der Meer, B. Murdin, and S. D. Ganichev, “Fast detector of the ellipticity of infrared and terahertz radiation based on HgTe quantum well structures,” J. Appl. Phys. 105, 013106 (2009). [CrossRef]
  24. M. Darsht, “The effect of an environment and external impacts on the polarized light propagation,” Ph.D. thesis (Chelyabinsk State Technical University, 1996, in Russian).
  25. A. Tichonov, Methods of Incorrect Problems Solving (Nauka, 1979).
  26. A. Zhiglinsky and V. Kuchinsky, Real Fabry–Perot Interferometer (Mashinostroyeniete, 1983).
  27. http://plasma.karelia.ru/~ekostq/PUBLIC/fs/index_2.html .
  28. R. Deyanov and B. Schedrin, “Algorithm of subsequent descent on local minima system,” Appl. Math. Inf. 30, 46–54(2008).
  29. A. Malakhov, Cumulant Analysis of Random Non-Gaussian Processes and their Transformations (Sovetskoye Radio, 1978, in Russian).
  30. A. Tikhonov and V. Arsenin, Solution Methods for Ill-Conditioned Problems (Nauka, 1986, in Russian).
  31. A. I. Zhdanov, “The method of augmented regularized normal equations,” Comput. Math. Math. Phys. 52, 194–197(2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited