OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 1006–1015

Dynamic polarization holography: 2. Dynamic polarization-holographic gratings and their application

Barbara Kilosanidze, George Kakauridze, Irakli Chaganava, and Yuri Mshvenieradze  »View Author Affiliations


Applied Optics, Vol. 52, Issue 5, pp. 1006-1015 (2013)
http://dx.doi.org/10.1364/AO.52.001006


View Full Text Article

Enhanced HTML    Acrobat PDF (620 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dynamic polarization-holographic gratings with a different profile of anisotropy in the band are presented. Polarization-sensitive recording materials of two types are used: material possessing high dark relaxation and highly reversible material without dark relaxation in which the recorded grating is erased by a circularly polarized beam. For a grating recorded by two orthogonally circularly polarized beams a diffraction efficiency of 20% has been obtained at 3.5W/cm2 power density during 1 ms recording/erasing time. An all-optical cross commutator based on the matrix of dynamic reprogrammable polarization-holographic microholograms is considered. The amplification of the weak beam at two-wave mixing in polarization-sensitive materials has been shown, with an obtained amplification coefficient of 4.95.

© 2013 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(190.7070) Nonlinear optics : Two-wave mixing
(260.5430) Physical optics : Polarization
(190.2055) Nonlinear optics : Dynamic gratings

ToC Category:
Physical Optics

History
Original Manuscript: September 28, 2012
Revised Manuscript: December 7, 2012
Manuscript Accepted: December 17, 2012
Published: February 7, 2013

Citation
Barbara Kilosanidze, George Kakauridze, Irakli Chaganava, and Yuri Mshvenieradze, "Dynamic polarization holography: 2. Dynamic polarization-holographic gratings and their application," Appl. Opt. 52, 1006-1015 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-5-1006


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Sh. Kakichashvili, Polarization Holography (Nauka, 1989).
  2. B. Kilosanidze, G. Kakauridze, and I. Chaganava, “Dynamic polarization holography. 1. Dynamic polarization-sensitive materials on the basis of azo-dye-containing polymers,” Appl. Opt. 48, 1861–1868 (2009). [CrossRef]
  3. B. Kilosanidze, G. Kakauridze, and I. Chaganava, “Dynamic polarization-sensitive media,” Opt. Mem. Neural Netw. 16, 17–23 (2007). [CrossRef]
  4. B. Kilosanidze, G. Kakauridze, and I. Chaganava, “Dynamic polarization holography: methods and applications,” J. Holography Speckle 5, 52–61 (2009). [CrossRef]
  5. I. Chaganava, G. Kakauridze, and B. Kilosanidze, “Development of high-performance, stable and moisture-resistant polarization-sensitive materials,” Proc. SPIE 8126, 812651 (2011). [CrossRef]
  6. S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain crystalline polyester architecture for reversible optical storage,” Macromolecules 28, 2172–2183 (1995). [CrossRef]
  7. F. L. Labarthet, S. Freiberg, C. Pellerin, M. Pézolet, A. Natansohn, and P. Rochon, “Spectroscopic and optical characterization of a series of azobenzene-containing side-chain liquid crystalline polymers,” Macromolecules 33, 6815–6823 (2000). [CrossRef]
  8. R. Hagen and T. Bieringer, “Photoaddressable polymers for optical data storage,” Adv. Mater. 13, 1805–1810 (2001). [CrossRef]
  9. V. Vinetskii, N. Kukhtarev, S. Odulov, and M. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 129, 113–137 (1979). [CrossRef]
  10. V. Vinetskii and N. Kukhtarev, Dynamic Holography(Naukova Dumka, 1983).
  11. Sh. Kakichashvili, “On the effect of the rotation of an axis of photoinduced anisotropy,” Opt. Spectrosc. 56, 977–978 (1984).
  12. B. Y. Zel’dovich and N. V. Tabiryan, “Orientational effect of a light wave on a cholesteric mesophase,” Sov. Phys. JETP 55, 167–176 (1982).
  13. I. C. Khoo, “Dynamic gratings and the associated self diffractions and wavefront conjugation processes in nematic liquid crystals,” IEEE J. Quantum Electron. 22, 1268–1275 (1986). [CrossRef]
  14. A. G. Chen and D. Brady, “Real-time holography in azo-dye-doped liquid crystals,” Opt. Lett. 17, 441–443 (1992). [CrossRef]
  15. N. C. R. Holme and P. S. Ramanujam, “10,000 optical write, read, and erase cycles in an azobenzene sidechain liquid-crystalline polyester,” Opt. Lett. 21, 902–904 (1996). [CrossRef]
  16. A. Fuh, C.-C. Liao, C.-Y. Tsai, C.-L. Lu, and D.-M. Hsieh, “Fast optical recording in dye-doped polymer-dispersed liquid-crystal films,” Opt. Lett. 26, 447–449 (2001). [CrossRef]
  17. Sandalphon, B. Kippelen, N. Peyghambarian, S. R. Lyon, A. B. Padias, and H. K. Hall, “Dual-grating formation through photorefractivity and photoisomerization in azo-dye-doped polymers,” Opt. Lett. 19, 68–70 (1994).
  18. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941). [CrossRef]
  19. Sh. Kakichashvili, “On the regularity in photoanisotropic phenomena,” Opt. Spectrosc. 52, 317–322 (1982).
  20. Sh. Kakichashvili, “On the regularity in the phenomena of photoanisotropy and photogyrotropy,” Opt. Spectrosc. 63, 911–917 (1987).
  21. B. Kilosanidze and G. Kakauridze, “Polarization-holographic gratings for analysis and transformations of light: 1. the analysis of completely polarized light,” Appl. Opt. 46, 1040–1049 (2007). [CrossRef]
  22. G. Kakauridze and B. Kilosanidze, “Polarization-holographic gratings that form plane-polarized orders of diffraction,” J. Opt. Technol. 73, 188–192 (2006). [CrossRef]
  23. A. Mikaelian and V. Salakhutdinov, “Using of dynamic holograms for information channel switching,” Opt. Mem. Neural Netw. 1, 315–324 (1992).
  24. J. Woo, E. Kim, B. Kim, and Y. Cho, “Morphology and switching of holographic gratings containing an azo dye,” Liq. Cryst. 34, 527–533 (2007). [CrossRef]
  25. N. Wollfer, B. Vinouze, and P. Gravey, “Holographic switching between single mode fibres based on electrically addressed nematic liquid crystal gratings with high deflection accuracy,” Opt. Commun. 160, 42–46 (1999). [CrossRef]
  26. G. Kakauridze and B. Kilosanidze, “Polarization-holographic diffraction element-based real-time imaging Stokes spectropolarimetry,” Proc. SPIE 7957, 795728 (2011). [CrossRef]
  27. S. Takeuchi, S. Ruhman, T. Tsuneda, M. Chiba, T. Taketsugu, and T. Tahara, “Spectroscopic tracking of structural evolution in ultrafast stilbene photoisomerization,” Science 322, 1073–1077 (2008). [CrossRef]
  28. C. X. Sheng, R. A. Norwood, J. Wang, J. Thomas, Y. Wu, Z. Zheng, N. Tabirian, D. M. Steeves, B. R. Kimball, and N. Peyghambarian, “Time-resolved studies of photoinduced birefringence in azobenzene dye-doped polymer films,” Appl. Opt. 47, 5074–5077 (2008). [CrossRef]
  29. P. Pagliusi, R. Macdonald, S. Busch, G. Cipparrone, and M. Kreuzer, “Nonlocal dynamic gratings and energy transfer by optical two-beam coupling in a nematic liquid crystal owing to highly sensitive photoelectric reorientation,” J. Opt. Soc. Am. B 18, 1632–1638 (2001). [CrossRef]
  30. J. L. Carns, G. Cook, M. A. Saleh, S. Guha, S. A. Holmstrom, and D. R. Evans, “Spatial distribution of power coupling in self-pumped photorefractive reflection gratings,” Appl. Opt. 44, 7452–7457 (2005). [CrossRef]
  31. S. Nersisyan, N. Tabiryan, and C. M. Stickley, “Energy transfer between laser beams due to recording of optical axis gratings in liquid crystals,” J. Opt. Soc. Am. B 23, 2113–2120 (2006). [CrossRef]
  32. I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M.-Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Opt. Lett. 22, 1229–1231 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited