OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 1016–1024

Spectral power distribution deconvolution scheme for phosphor-converted white light-emitting diode using multiple Gaussian functions

Bong-Min Song and Bongtae Han  »View Author Affiliations

Applied Optics, Vol. 52, Issue 5, pp. 1016-1024 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1022 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a procedure to deconvolute the spectral power distribution (SPD) of phosphor-converted LEDs (pc-LEDs). The procedure involves a two-step process using multiple Gaussian functions. The first step is a preliminary process to deconvolute an SPD using a pair of Gaussian functions. Using the results from the first step, the second step determines (a) the number of Gaussian functions to be used in the analysis and (b) the initial values and regression domains of the coefficients of each Gaussian function for subsequent multiple-regression operations. Successful deconvolution is confirmed by comparing the values of lumen, correlated color temperature, and color rendering index with the experimental data of cool and warm pc-LEDs. The proposed approach is illustrated to evaluate the yellow-to-blue ratio and the phosphor power conversion efficiency.

© 2013 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(350.4600) Other areas of optics : Optical engineering

ToC Category:
Optical Devices

Original Manuscript: October 8, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 21, 2012
Published: February 7, 2013

Bong-Min Song and Bongtae Han, "Spectral power distribution deconvolution scheme for phosphor-converted white light-emitting diode using multiple Gaussian functions," Appl. Opt. 52, 1016-1024 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. H. Lin, J. P. You, Y. C. Lin, N. T. Tran, and F. G. Shi, “Development of high-performance optical silicone for the packaging of high-power LEDs,” IEEE Trans. Compon. Packag. Technol. 33, 761–766 (2010). [CrossRef]
  2. S.-C. Yang, P. Lin, C.-P. Wang, S. Huang, C.-L. Chen, P.-F. Chiang, A.-T. Lee, and M.-T. Chu, “Failure and degradation mechanisms of high-power white light emitting diodes,” Microelectron. Reliab. 50, 959–964 (2010). [CrossRef]
  3. K. ZhangQin, F. Jiao, Z. Chen, L. Xu, S. Wang, and S. Liu, “Effect of temperature and moisture on the luminescence properties of silicone filled with YAG phosphor,” J. Semicond. 32, 012002 (2011). [CrossRef]
  4. E. Jung, J. H. Ryu, C. H. Hong, and H. Kim, “Optical degradation of phosphor-converted white GaN-based light-emitting diodes under electro-thermal stress,” J. Electrochem. Soc. 158, H132–H136 (2011). [CrossRef]
  5. G. Pozina, J. P. Bergman, B. Monemar, T. Takeuchi, H. Amano, and I. Akasaki, “Origin of multiple peak photoluminescence in InGaN/GaN multiple quantum wells,” J. Appl. Phys. 88, 2677–2681 (2000). [CrossRef]
  6. L. T. Tan, R. W. Martin, K. P. O’Donnell, and I. M. Watson, “Photoluminescence and phonon satellites of single InGaN/GaN quantum wells with varying GaN cap thickness,” Appl. Phys. Lett. 89, 101910 (2006). [CrossRef]
  7. E. Coetsee, J. J. Terblans, O. M. Ntwaeaborwa, and H. C. Swart, “Luminescent mechanism of Y2SiO5:Ce phosphor powder,” Phys. B 404, 4426–4430 (2009). [CrossRef]
  8. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44, 111302 (2005). [CrossRef]
  9. Y. Uchida and T. Taguchi, “Lighting theory and luminous characteristics of white light-emitting diodes,” Opt. Eng. 44, 124003 (2005). [CrossRef]
  10. N.-C. Hu, C.-C. Wu, S.-F. Chen, and H.-C. Hsiao, “Implementing dynamic daylight spectra with light-emitting diodes,” Appl. Opt. 47, 3423–3432 (2008). [CrossRef]
  11. R. Zheng, “Luminous efficiency and color rendering of phosphor-converted white LEDs,” J. Light Visual Environ. 32, 230–233 (2008). [CrossRef]
  12. F. Reifegerste and J. Lienig, “Modelling of the temperature and current dependence of LED spectra,” J. Light Visual Environ. 32, 288–294 (2008). [CrossRef]
  13. A. Keppens, W. R. Ryckaert, G. Deconinck, and P. Hanselaer, “Modeling high power light-emitting diode spectra and their variation with junction temperature,” J. Appl. Phys. 108, 043104 (2010). [CrossRef]
  14. I. Moreno and C.-C. Sun, “Modeling the radiation pattern of LEDs,” Opt. Express 16, 1808–1819 (2008). [CrossRef]
  15. R. Deepa and S. Arvind, “Modeling and simulation of multielement LED source,” J. Light Visual Environ. 35, 34–41 (2011). [CrossRef]
  16. J. L. Devore, Probability and Statistics for Engineering and the Sciences, 7th ed. (Thomson Brooks/Cole, 2008).
  17. Z. Liu, S. Liu, K. Wang, and X. Luo, “Analysis of factors affecting color distribution of white LEDs,” in Electronic Packaging Technology & High Density Packaging, 2008 (IEEE, 2008), pp. 1–8.
  18. Z. Liu, S. Liu, K. Wang, and X. Luo, “Optical analysis of phosphor’s location for high-power light-emitting diodes,” IEEE Trans. Device Mater. Reliab. 9, 65–73 (2009). [CrossRef]
  19. M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007). [CrossRef]
  20. L. Trevisanello, F. D. Zuani, M. Meneghini, N. Trivellin, E. Zanoni, and G. Meneghesso, “Thermally activated degradation and package instabilities of low flux LEDs,” in IEEE International Reliability Physics Symposium (IEEE, 2009), pp. 98–103.
  21. G. Meneghesso, M. Meneghini, and E. Zanoni, “Recent results on the degradation of white LEDs for lighting,” J. Phys. D 43, 354007 (2010). [CrossRef]
  22. U. S. Department of Energy, “Solid-state lighting,” http://www1.eere.energy.gov/buildings/ssl/sslbasics_ledbasics.html .
  23. H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505 (2005). [CrossRef]
  24. J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup,” Jpn. J. Appl. Phys. 44, L649–L651 (2005). [CrossRef]
  25. H. Luo, J. K. Kim, Y. A. Xi, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Trapped whispering-gallery optical modes in white light-emitting diode lamps with remote phosphor,” Appl. Phys. Lett. 89, 041125 (2006). [CrossRef]
  26. T. Nguyen The, Y. Jiun Pyng, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol. 27, 5145–5150 (2009). [CrossRef]
  27. J. You, N. Tran, Y.-C. Lin, Y. He, and F. Shi, “Phosphor-concentration-dependent characteristics of white LEDs in different current regulation modes,” J. Electron. Mater. 38, 761–766 (2009). [CrossRef]
  28. A. Keppens, Y. Zong, Y. Ohno, G. Deconinck, and P. Hanselaer, “Determining phosphors’ effective quantum efficiency for remote phosphor type LED modules,” in CIE Tutorial and Expert Symposium on Spectral and Imaging Methods for Photometry and Radiometry Location (CIE, 2010).
  29. J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Opt. Express 18, 5055–5060 (2010). [CrossRef]
  30. J. P. You, Y.-H. Lin, N. T. Tran, and F. G. Shi, “Phosphor concentration effects on optothermal characteristics of phosphor converted white light-emitting diodes,” J. Electron. Packag. 132, 031010 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited