OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 1025–1034

Effect of modular diffraction gratings on absorption in P3HT:PCBM layers

Byron Cocilovo, Akram Amooali, Alejandra Lopez-Santiago, Jacob Favela, Safatul Islam, Binh Duong, Palash Gangopadhyay, Mahmoud Fallahi, Jeanne E. Pemberton, Jayan Thomas, and Robert A. Norwood  »View Author Affiliations

Applied Optics, Vol. 52, Issue 5, pp. 1025-1034 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1072 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Various gratings with 700 nm feature spacings are patterned on the reverse side of organic solar cell active layers to increase the path length and constrain light to the cell through total internal reflection. The absorption enhancement is studied for 15, 40, and 120 nm active layers. We were able to confine 9% of the incident light over the wavelength range of 400–650 nm, with thinner gratings having a greater enhancement potential. The measurement setup utilizing an integrating sphere to fully characterize scattered or diffracted light is also fully described.

© 2013 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.3150) Instrumentation, measurement, and metrology : Integrating spheres
(350.6050) Other areas of optics : Solar energy

ToC Category:
Diffraction and Gratings

Original Manuscript: October 8, 2012
Revised Manuscript: November 28, 2012
Manuscript Accepted: January 5, 2013
Published: February 8, 2013

Byron Cocilovo, Akram Amooali, Alejandra Lopez-Santiago, Jacob Favela, Safatul Islam, Binh Duong, Palash Gangopadhyay, Mahmoud Fallahi, Jeanne E. Pemberton, Jayan Thomas, and Robert A. Norwood, "Effect of modular diffraction gratings on absorption in P3HT:PCBM layers," Appl. Opt. 52, 1025-1034 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kalowekamo and E. Baker, “Estimating the manufacturing cost of purely organic solar cells,” Solar Energy 83, 1224–1231 (2009). [CrossRef]
  2. A. L. Roes, E. A. Alsema, K. Blok, and M. K. Patel, “Ex-ante environmental and economic evaluation of polymer photovoltaics,” Prog. Photovoltaics 17, 372–393 (2009). [CrossRef]
  3. F. He and L. Yu, “How far can polymer solar cells go? In need of a synergistic approach,” J. Phys. Chem. Lett. 2, 3102–3113 (2011). [CrossRef]
  4. P. Peumans, A. Yakimov, and S. Forrest, “Small molecular weight organic thin-film photodetectors and solar cells,” J. Appl. Phys. 93, 3693–3723 (2003). [CrossRef]
  5. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 2005).
  6. Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, “For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010). [CrossRef]
  7. P. Kumar and S. Chand, “Recent progress and future aspects of organic solar cells,” Prog. Photovoltaics 20, 377–415 (2012). [CrossRef]
  8. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 39),” Prog. Photovoltaics 20, 12–20 (2012). [CrossRef]
  9. C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia, and S. P. Williams, “Polymer-fullerene bulk-heterojunction solar cells,” Adv. Mater. 22, 3839–3856 (2010). [CrossRef]
  10. S. Shahin, P. Gangopadhyay, and R. A. Norwood, “Ultrathin organic bulk heterojunction solar cells: plasmon enhanced performance using au nanoparticles,” Appl. Phys. Lett. 101, 053109 (2012). [CrossRef]
  11. A. J. Moule, J. B. Bonekamp, and K. Meerholz, “The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells,” J. Appl. Phys. 100, 094503 (2006). [CrossRef]
  12. S. Na, S. Kim, S. Kwon, J. Jo, J. Kim, T. Lee, and D. Kim, “Surface relief gratings on poly (3-hexylthiophene) and fullerene blends for efficient organic solar cells,” Appl. Phys. Lett. 91, 173509 (2007). [CrossRef]
  13. P. Campbell, and M. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62, 243–249 (1987). [CrossRef]
  14. L. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. Andersson, and J. Hummelen, “Trapping light in polymer photodiodes with soft embossed gratings,” Adv. Mater. 12, 189–195 (2000). [CrossRef]
  15. F. Llopis and I. Tobias, “The role of rear surface in thin silicon solar cells,” Solar Energy Mater. Solar Cells 87, 481–492 (2005). [CrossRef]
  16. M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, “Diffraction gratings and buried nano-electrodes—architectures for organic solar cells,” Thin Solid Films 451, 619–623 (2004). [CrossRef]
  17. F. Monestier, J. Simon, P. Torchio, L. Escoubas, F. Florya, S. Bailly, R. de Bettignies, S. Guillerez, and C. Defranoux, “Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend,” Solar Energy Mater. Solar Cells 91, 405–410 (2007). [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  19. K. Rajkanan, R. Singh, and J. Shewchun, “Absorption-coefficient of silicon for solar-cell calculations,” Solid-State Electron. 22, 793–795 (1979). [CrossRef]
  20. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” Proc. Natl. Acad. Sci. USA 107, 17491–17496 (2010). [CrossRef]
  21. E. G. Loewen and E. Popov, Diffraction Gratings and Applications (M. Dekker, 1997).
  22. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72, 899–907 (1982). [CrossRef]
  23. J. Bendickson, E. Glytsis, and T. Gaylord, “Scalar integral diffraction methods: unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses,” J. Opt. Soc. Am. A 15, 1822–1837 (1998). [CrossRef]
  24. J. R. Tumbleston, D. Ko, E. T. Samulski, and R. Lopez, “Electrophotonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer,” Appl. Phys. Lett. 94, 043305 (2009). [CrossRef]
  25. J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE, 2010).
  26. J. Hodgkinson, D. Masiyano, and R. P. Tatam, “Using integrating spheres as absorption cells: path-length distribution and application of Beer’s law,” Appl. Opt. 48, 5748–5758 (2009). [CrossRef]
  27. A. Lopez-Santiago, H. R. Grant, P. Gangopadhyay, R. Voorakaranam, R. A. Norwood, and N. Peyghambarian, “Cobalt ferrite nanoparticles polymer composites based all-optical magnetometer,” Opt. Mater. Express 2, 978–986 (2012). [CrossRef]
  28. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “Accurate measurement and characterization of organic solar cells RID D-7774-2011 RID A-2944-2011,” Adv. Funct. Mater. 16, 2016–2023 (2006). [CrossRef]
  29. J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater 23, 4782–4787 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited