OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 1035–1040

Temperature dependence of anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser studied by reflectance difference spectroscopy

Jinling Yu, Yonghai Chen, Shuying Cheng, and Yunfeng Lai  »View Author Affiliations


Applied Optics, Vol. 52, Issue 5, pp. 1035-1040 (2013)
http://dx.doi.org/10.1364/AO.52.001035


View Full Text Article

Enhanced HTML    Acrobat PDF (580 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The temperature dependence of the mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser has been studied by reflectance difference spectroscopy at different temperatures ranging from 80 to 330 K. The anisotropic broadening width and the anisotropic integrated area of the cavity mode under different temperatures are also determined. The relation between the mode splitting and the birefringence is obtained by theoretical calculation using a Jones matrix approach. The temperature dependence of the energy position of the cavity mode and the quantum well transition are also determined by nearly normal reflectance and photoluminescence, respectively.

© 2013 Optical Society of America

OCIS Codes
(160.6000) Materials : Semiconductor materials
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Materials

History
Original Manuscript: October 8, 2012
Revised Manuscript: January 2, 2013
Manuscript Accepted: January 4, 2013
Published: February 8, 2013

Citation
Jinling Yu, Yonghai Chen, Shuying Cheng, and Yunfeng Lai, "Temperature dependence of anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser studied by reflectance difference spectroscopy," Appl. Opt. 52, 1035-1040 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-5-1035


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. D. Berger, C. Bru, T. Benyattou, G. Guillot, A. Chenevas Paule, L. Couturier, and P. Grosse, “Investigations of vertical cavity surface emitting laser by photoreflectance spectroscopy,” Appl. Phys. Lett. 68, 4–6 (1996). [CrossRef]
  2. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: A review,” Appl. Opt. 49, F79–F98 (2010). [CrossRef]
  3. J. J. Cui, Y. Q. Ning, Y. Zhang, P. Kong, G. Y. Liu, X. Zhang, Z. F. Wang, T. Li, Y. F. Sun, and L. J. Wang, “Design and characterization of a nonuniform linear vertical-cavity surface-emitting laser array with a Gaussian far-field distribution,” Appl. Opt. 48, 3317–3321 (2009). [CrossRef]
  4. Y. Q. Hao, Y. Luo, Y. A. Feng, C. L. Yan, Y. J. Zhao, Y. X. Wang, X. H. Wang, Y. Qu, and G. J. Liu, “Large aperture vertical cavity surface emitting laser with distributed-ring contact,” Appl. Opt. 50, 1034–1037 (2011). [CrossRef]
  5. Y. S. Huang, L. Malikova, F. H. Pollak, H. Shen, J. Pamulapati, and P. Newman, “Surface photovoltage spectroscopy, photoreflectance, and reflectivity characterization of an InGaAs/GaAs/GaAlAs vertical-cavity surface-emitting laser including temperature dependence,” Appl. Phys. Lett. 77, 37–39(2000). [CrossRef]
  6. P. J. Klar, G. Rowland, P. J. S. Thomas, A. Onischenko, T. E. Sale, T. J. C. Hosea, and R. Grey, “Photomodulated reflectance study of InxGa1−xAs/GaAs/AlAs microcavity vertical-cavity surface emitting laser structures in the weak-coupling regime: The cavity/ground-state-exciton resonance,” Phys. Rev. B 59, 2894–2901 (1999). [CrossRef]
  7. R. Safaisini, J. R. Joseph, D. Louderback, X. J. Jin, A. N. Al-Omari, and K. L. Lear, “Temperature dependence of 980 nm oxide-confined vcsel dynamics,” IEEE Photonics Technol. Lett. 20, 1273–1275 (2008). [CrossRef]
  8. D. T. Schaafsma and D. H. Christensen, “Mode splitting in side emission from vertical-cavity surface-emitting lasers,” Phys. Rev. B 54, 14618–14622 (1996). [CrossRef]
  9. A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Elasto-optic anisotropy and polarization orientation of vertical-cavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 69, 1041–1043 (1996). [CrossRef]
  10. T. Mukaihara, F. Koyama, and K. Iga, “Engineered polarization control of GaAs/AlGaAs surface-emitting lasers by anisotropic stress from elliptic etched substrate hole,” IEEE Photonics Technol. Lett. 5, 133–135 (1993). [CrossRef]
  11. P. Debernardi, G. P. Bava, C. Degen, I. Fischer, and W. Elsaber, “Influence of anisotropies on transverse modes in oxide-confined vcsels,” IEEE J. Quantum. Electron. 38, 73–84 (2002). [CrossRef]
  12. C. Thompson and B. L. Weiss, “Acoustooptic interactions in AlGaAs-GaAs planar multilayer waveguide structures,” IEEE J. Quantum. Electron. 33, 1601–1607 (1997). [CrossRef]
  13. S. Balle, E. Tolkachova, M. San Miguel, J. R. Tredicce, J. Martin-Regalado, and A. Gahl, “Mechanisms of polarization switching in single-transverse-mode vertical-cavity surface-emitting lasers: thermal shift and nonlinear semiconductor dynamics,” Opt. Lett. 24, 1121–1123 (1999). [CrossRef]
  14. K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photonics Technol. Lett. 6, 40–42 (1994). [CrossRef]
  15. J. Ostermann, P. Debernardi, C. Jalics, and R. Michalzik, “Shallow surface gratings for high-power VCSELs with one preferred polarization for all modes,” IEEE Photonics Technol. Lett. 17, 1593–1595 (2005). [CrossRef]
  16. K. D. Choquette, K. L. Schneider, R. P. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum. Electron. 1, 661–666 (1995). [CrossRef]
  17. R. F. M. Hendriks, M. P. van Exter, J. P. Woerdman, A. van Geelen, L. Weegels, K. H. Gulden, and M. Moser, “Electro-optic birefringence in semiconductor vertical-cavity lasers,” Appl. Phys. Lett. 71, 2599–2601 (1997). [CrossRef]
  18. P. Debernardi, J. M. Ostermann, M. Sondermann, T. Ackemann, G. P. Bava, and R. Michalzik, “Theoretical-experimental study of the vectorial modal properties of polarization-stable multimode grating vcsels,” IEEE J. Sel. Top. Quantum. Electron. 13, 1340–1348 (2007). [CrossRef]
  19. J. L. Yu, Y. H. Chen, C. Y. Jiang, X. L. Ye, and H. Y. Zhang, “Detecting and tuning anisotropic mode splitting induced by birefringence in an InGaAs/GaAs/AlGaAs vertical-cavity surface-emitting laser,” J. Appl. Phys. 111, 043109 (2012). [CrossRef]
  20. D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A. 6, 1327–1332 (1988). [CrossRef]
  21. Y. H. Chen, X. L. Ye, B. Xu, and Z. G. Wang, “Strong in-plane optical anisotropy of asymmetric (001) quantum wells,” J. Appl. Phys. 99, 096102 (2006). [CrossRef]
  22. Y. H. Chen, X. L. Ye, J. Z. Wang, Z. G. Wang, and Z. Yang, “Interface-related in-plane optical anisotropy in GaAs/AlxGa1−xAs single-quantum-well structures studied by reflectance difference spectroscopy,” Phys. Rev. B 66, 195321 (2002). [CrossRef]
  23. P. J. Klar, G. Rowland, T. E. Sale, T. J. C. Hosea, and R. Grey, “Reflectance and photomodulated reflectance studies of cavity mode and excitonic transitions in an InGaAs/GaAs/AlAs/AlGaAs VCSEL structure,” Phys. Status Solidi A 170, 145–158 (1998). [CrossRef]
  24. M. Sondermann, M. Weinkath, T. Ackemann, J. Mulet, and S. Balle, “Two-frequency emission and polarization dynamics at lasing threshold in vertical-cavity surface-emitting lasers,” Phys. Rev. A 68, 033822 (2003). [CrossRef]
  25. A. K. J. van Doorn, M. P. van Exter, and J. P. Woerdman, “Effects of transverse anisotropy on vcsel spectra,” Electron. Lett. 30, 1941–1943 (1994). [CrossRef]
  26. S. T. Su, S. F. Tang, T. C. Chen, C. D. Chiang, S. T. Yang, and W. K. Su, “Temperature dependent vcsel optical characteristics based on graded AlxGa1−xAs/GaAs distributed bragg reflectors: reflectivity and beam profile analyses,” Proc. SPIE 6132, L1320 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited