OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 1049–1053

Polarization-independent high-index contrast grating and its fabrication tolerances

Kazuhiro Ikeda, Kazuma Takeuchi, Kentaro Takayose, Il-Sug Chung, Jesper Mørk, and Hitoshi Kawaguchi  »View Author Affiliations

Applied Optics, Vol. 52, Issue 5, pp. 1049-1053 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (602 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A polarization-independent, high-index contrast grating (HCG) with a single layer of cross stripes allowing simple fabrication is proposed. Since the cross stripes structure can be suspended in air by selectively wet-etching the layer below, all the layers can be grown at once when implemented for vertical-cavity surface-emitting lasers. We optimized the structure to have a broad and high reflectivity band centered at around 1 μm using a finite difference time domain method, and obtained an 80 nm high reflectivity band centered at 0.97 μm in which the reflectivity exceeded 99.5%. We also investigated the fabrication tolerances of the structure and found that, assuming careful optimizations of electron beam lithography for the precise grating width and dry-etching for the vertical sidewall, the suggested polarization-independent HCG can be fabricated using standard technologies.

© 2013 Optical Society of America

OCIS Codes
(230.1950) Optical devices : Diffraction gratings
(230.4040) Optical devices : Mirrors
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Optical Devices

Original Manuscript: October 19, 2012
Revised Manuscript: January 3, 2013
Manuscript Accepted: January 5, 2013
Published: February 8, 2013

Kazuhiro Ikeda, Kazuma Takeuchi, Kentaro Takayose, Il-Sug Chung, Jesper Mørk, and Hitoshi Kawaguchi, "Polarization-independent high-index contrast grating and its fabrication tolerances," Appl. Opt. 52, 1049-1053 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. F. R. Mateus, M. C. Y. Huang, D. Yunfei, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photon. Technol. Lett. 16, 518–520 (2004). [CrossRef]
  2. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007). [CrossRef]
  3. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express 16, 14221–14226 (2008). [CrossRef]
  4. A. Hardy, D. F. Welch, and W. Streifer, “Analysis of second-order gratings,” IEEE J. Quantum Electron. 25, 2096–2105 (1989). [CrossRef]
  5. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456–3462 (2008). [CrossRef]
  6. I.-S. Chung, V. Iakovlev, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, and J. Mørk, “Broadband MEMS-tunable high-index-contrast subwavelength grating long-wavelength VCSEL,” IEEE J. Quantum Electron. 46, 1245–1253 (2010). [CrossRef]
  7. H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization bistable vertical-cavity surface-emitting lasers,” Jpn. J. Appl. Phys. 45, L894–L897 (2006). [CrossRef]
  8. J. Yamauchi, N. Goto, and H. Nakano, “Broadband mirror using a two-dimensional subwavelength grating,” in Proceedings of the Society Conference of IEICE, Electronics (IEICE, 2007), p. 196 (in Japanese).
  9. R. G. Mote, S. F. Yu, W. Zhou, and X. F. Li, “Design and analysis of two-dimensional high-index-contrast grating surface-emitting lasers,” Opt. Express 17, 260–265 (2009). [CrossRef]
  10. D. Zhao, H. Yang, Z. Ma, and W. Zhou, “Polarization independent broadband reflectors based on cross-stacked gratings,” Opt. Express 19, 9050–9055 (2011). [CrossRef]
  11. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010). [CrossRef]
  12. S. K. Chin, N. A. Nicorovici, and R. C. McPhedran, “Green’s function and lattice sums for electromagnetic scattering by a square array of cylinders,” Phys. Rev. E 49, 4590–4602 (1994). [CrossRef]
  13. H. Sano, J. Kashino, A. Gerke, A. Imamura, F. Koyama, and C. Chang-Hasnain, “Transverse mode control of VCSELs with high contrast sub-wavelength grating functioning as angular filter,” in 2012 Conference on Lasers and Electro-Optics (IEEE, 2012), paper CW3N.5.
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  15. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193 nm optical lithography,” Opt. Express 14, 2440–2445 (2006). [CrossRef]
  16. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  17. K. Iga, F. Koyama, and S. Kinoshita, “Surface emitting semiconductor lasers,” IEEE J. Quantum Electron. 24, 1845–1855 (1988). [CrossRef]
  18. M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900(2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited