OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 1066–1075

Comparison of an accelerated weighted fluorescence Monte Carlo simulation method with reference methods in multi-layered turbid media

Georg Hennig, Herbert Stepp, Ronald Sroka, and Wolfgang Beyer  »View Author Affiliations

Applied Optics, Vol. 52, Issue 5, pp. 1066-1075 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (315 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Monte Carlo (MC) simulations are frequently used to simulate the radial distribution of remitted fluorescence light from tissue surfaces upon pencil beam excitation to gather information about influences of different tissue parameters. Here, the “weighted direct emission method” (WDEM) is proposed, which uses a weighted MC simulation approach for both excitation and fluorescence photons, and is compared to four other methods in terms of accuracy and speed, and using a broad range of tissue-relevant optical parameters. The WDEM is 5.2 × faster on average than a fixed weight MC approach while still preserving its accuracy. Additional gain of speed can be achieved by implementing it on graphics processing units.

© 2013 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.7050) Scattering : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 8, 2012
Revised Manuscript: December 14, 2012
Manuscript Accepted: December 23, 2012
Published: February 8, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Georg Hennig, Herbert Stepp, Ronald Sroka, and Wolfgang Beyer, "Comparison of an accelerated weighted fluorescence Monte Carlo simulation method with reference methods in multi-layered turbid media," Appl. Opt. 52, 1066-1075 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hegyi, V. Hegyi, T. Ruzicka, P. Arenberger, and C. Berking, “New developments in fluorescence diagnostics,” J. Dtsch. Dermatol. Ges. 9, 368–372 (2011). [CrossRef]
  2. Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in vivo,” in Handbook of Optical Biomedical Diagnostics, V. V. Tuchin, ed. (SPIE, 2002), pp. 725–785.
  3. I. Georgakoudi, “The color of cancer,” J. Lumin. 119–120, 75–83 (2006). [CrossRef]
  4. H. Stepp, T. Beck, W. Beyer, C. Pfaller, M. Schuppler, R. Sroka, and R. Baumgartner, “Measurement of fluorophore concentration in turbid media by a single optical fiber,” Med. Laser Appl. 22, 23–34 (2007). [CrossRef]
  5. P. A. Valdes, A. Kim, F. Leblond, O. M. Conde, B. T. Harris, K. D. Paulsen, B. C. Wilson, and D. W. Roberts, “Combined fluorescence and reflectance spectroscopy for in vivo quantification of cancer biomarkers in low- and high-grade glioma surgery,” J. Biomed. Opt. 16, 116007 (2011). [CrossRef]
  6. G. Hennig, H. Stepp, and A. Johansson, “Photobleaching-based method to individualize irradiation time during interstitial 5-aminolevulinic acid photodynamic therapy,” Photodiagnosis Photodyn. Ther. 8, 275–281 (2011). [CrossRef]
  7. B. W. Pogue and G. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt. 37, 7429–7436 (1998). [CrossRef]
  8. S. Avrillier, E. Tinet, D. Ettori, J. M. Tualle, and B. Gelebart, “Influence of the emission-reception geometry in laser-induced fluorescence spectra from turbid media,” Appl. Opt. 37, 2781–2787 (1998). [CrossRef]
  9. K. Vishwanath, B. Pogue, and M. A. Mycek, “Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational methods,” Phys. Med. Biol. 47, 3387–3405 (2002). [CrossRef]
  10. N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335–341 (1949). [CrossRef]
  11. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, and S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997). [CrossRef]
  12. V. V. Tuchin, “Methods and algorithms for the measurement of the optical parameters of tissues,” in Tissue Optics—Light Scattering Methods and Instruments for Medical Diagnosis, V. V. Tuchin, 2nd ed. (SPIE, 2007), pp. 143–256.
  13. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Proc. SPIE IS 5, 102–111 (1989).
  14. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983). [CrossRef]
  15. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995). [CrossRef]
  16. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17, 20178–20190 (2009). [CrossRef]
  17. R. J. Crilly, W. F. Cheong, B. Wilson, and J. R. Spears, “Forward-adjoint fluorescence model: Monte Carlo integration and experimental validation,” Appl. Opt. 36, 6513–6519(1997). [CrossRef]
  18. S. L. Jacques, “Monte Carlo simulations of fluorescence in turbid media,” in Handbook of Biomedical Fluorescence, M. A. Mycek and B. W. Pogue, eds. (Marcel-Dekker, 2003).
  19. J. Swartling, A. Pifferi, A. M. Enejder, and S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20, 714–727 (2003). [CrossRef]
  20. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44, 4291–4305 (2005). [CrossRef]
  21. A. A. Tanbakuchi, A. R. Rouse, and A. F. Gmitro, “Monte Carlo characterization of parallelized fluorescence confocal systems imaging in turbid media,” J. Biomed. Opt. 14, 044024 (2009). [CrossRef]
  22. A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41, 2221–2227 (1996). [CrossRef]
  23. A. Liebert, H. Wabnitz, N. Zolek, and R. Macdonald, “Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media,” Opt. Express 16, 13188–13202 (2008). [CrossRef]
  24. S. L. Jacques and L. Wang, “(MCML) Monte Carlo for multi-layered media” (1992), retrieved Jan 20, 2011, http://omlc.ogi.edu/software/mc/ .
  25. E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1, 658–675 (2010). [CrossRef]
  26. S. L. Jacques, “mcsubfluor.c” (2011), retrieved Sep 22, 2011, http://omlc.ogi.edu/software/mc/mcfluor/index.html .
  27. G. M. Palmer and N. Ramanujam, “Monte-Carlo-based model for the extraction of intrinsic fluorescence from turbid media,” J. Biomed. Opt. 13, 024017 (2008). [CrossRef]
  28. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14, 024012 (2009). [CrossRef]
  29. N. Baddour, “Operational and convolution properties of two-dimensional Fourier transforms in polar coordinates,” J. Opt. Soc. Am. A 26, 1767–1777 (2009). [CrossRef]
  30. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941). [CrossRef]
  31. A. Averbuch, R. R. Coifman, D. L. Donoho, M. Elad, and M. Israeli, “Fast and accurate polar Fourier transform,” Appl. Comput. Harmon. Anal. 21, 145–167 (2006). [CrossRef]
  32. H. F. Johnson, “An improved method for computing a discrete Hankel transform,” Comput. Phys. Commun. 43, 181–202(1987). [CrossRef]
  33. “GSL—GNU scientific library—discrete Hankel transforms” (Free Software Foundation, Inc., 2010), retrieved Feb 11, 2011, http://www.gnu.org/software/gsl/manual/html_node/Discrete-Hankel-Transforms.html .
  34. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plucker coordinates,” Biomed. Opt. Express 1, 165–175 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited