OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 1094–1099

High-sensitive measurement of water vapor: shot-noise level performance via a noise canceller

Qiang Wang, Jun Chang, Cunguang Zhu, Yongning Liu, Guangping Lv, Fupeng Wang, Xiangzhi Liu, and Zongliang Wang  »View Author Affiliations

Applied Optics, Vol. 52, Issue 5, pp. 1094-1099 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Taking advantages of distributed feedback laser diode a technique is described to achieve high-sensitive measurement for water vapor concentration. This technique, with a modified balanced ratio metric detection system, has improved the accuracy of measured absorption spectrum by two main aspects. Improvement by matching equivalent conductivity of signal or reference photo detector (PD) is presented, and with the additional matched resistance suppression for the power variation in the signal-beam has been improved from 53 to 88 dB. The importance of integrating amplifier bandwidth design from the circuit to the measured absorption spectrum has been demonstrated in our experiment. For a scan rate of 32 Hz with an optimal corresponding bandwidth of 15.9 kHz, the absorption spectrum is well described by Voigt profile, with a difference of 1% at an atmosphere pressure of 1 atm and a room temperature of 296 K. With the application of averaging and filtering, absorption sensitivity of 1.093×106 for water vapor at 1368.597 nm has been demonstrated, and the corresponding concentration is 71.8 ppb in just a 10 cm path length.

© 2013 Optical Society of America

OCIS Codes
(010.7340) Atmospheric and oceanic optics : Water
(040.5160) Detectors : Photodetectors
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(300.1030) Spectroscopy : Absorption
(300.3700) Spectroscopy : Linewidth
(140.3518) Lasers and laser optics : Lasers, frequency modulated

ToC Category:

Original Manuscript: November 29, 2012
Revised Manuscript: January 3, 2013
Manuscript Accepted: January 3, 2013
Published: February 8, 2013

Qiang Wang, Jun Chang, Cunguang Zhu, Yongning Liu, Guangping Lv, Fupeng Wang, Xiangzhi Liu, and Zongliang Wang, "High-sensitive measurement of water vapor: shot-noise level performance via a noise canceller," Appl. Opt. 52, 1094-1099 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Zhang, D. J. Webb, and G. D. Peng, “Investigation into time response of polymer fiber Bragg grating based humidity sensors,” J. Lightwave Technol. 30, 1090–1096 (2012). [CrossRef]
  2. S. Hunsmann, K. Wunderle, S. Wagner, U. Rascher, U. Schurr, and V. Ebert, “Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm,” Appl. Phys. B 92, 393–401 (2008). [CrossRef]
  3. J. Goldmeer and D. J. Kane, “Real-time 2-D imaging of water vapor in diffusion flames,” in Laser Applications to Chemical and Environmental Analysis, T. Li, ed., Vol. 36 of OSA Trends Opt. Photonics Ser. (Optical Society of America, 2000), paper SuA3.
  4. J. Podolske and M. Loewenstein, “Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere,” Appl. Opt. 32, 5324–5333 (1993). [CrossRef]
  5. J. E. Hayward, D. T. Cassidy, and J. Reid, “High-sensitivity transient spectroscopy using tunable diode lasers,” Appl. Phys. B 48, 25–29 (1989). [CrossRef]
  6. Y. Zhang, J. Chang, Q. Wang, S. Zhang, and F. Song, “The theoretical and experimental exploration of a novel water vapor concentration measurement scheme based on scanning spectrometry,” presented at International Conference on Electronics and Optoelectronics 2011, Dalian, China, July 29–31 2011.
  7. Q. Wang, J. Chang, C. G. Zhu, C. Li, F. J. Song, Y. N. Liu, and X. Z. Liu, “Detection of water vapor concentration based on differential value of two adjacent absorption peaks,” Laser Phys. Lett. 9, 421–425 (2012). [CrossRef]
  8. K. L. Haller and P. C. D. Hobbs, “Double beam laser absorption spectroscopy: shot-noise-limited performance at baseband with a novel electronic noise canceller,” Proc. SPIE 1435, 298–309 (1991). [CrossRef]
  9. P. C. D. Hobbs, “Shot-noise optical measurement at baseband with noisy lasers,” Proc. SPIE 1376, 216–221 (1990). [CrossRef]
  10. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, C. E. Otis, D. A. Palombo, and D. M. Sonnenfroh, “Ultrasensitive dual-beam absorption and gain spectroscopy: applications for near-infrared and visible diode laser sensors,” Appl. Opt. 34, 3240–3249 (1995). [CrossRef]
  11. B. L. Upschulte and M. G. Allen, “Diode laser measurements of linestrengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 μm,” J. Quant. Spectrosc. Radiat. Transfer 59, 653–670 (1998). [CrossRef]
  12. D. M. Sonnenfroh and M. G. Allen, “Ultrasensitive, visible tunable diode laser detection of NO2,” Appl. Opt. 35, 4053–4058 (1996). [CrossRef]
  13. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwer, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  14. Y. Yuxin, L. Tianguang, H. Hong, W. Zezhong, Y. X. Yun, T. G. Lv, H. Han, Z. Z. Wang, J. X. Yao, X. W. Li, and X. X. Zhao, “Effects of pressure and temperature on gaseous infrared absorption properties,” Infrared Laser Eng. 40, 992–996 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited