OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 966–979

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating

Manuel Solano, Muhammad Faryad, Anthony S. Hall, Thomas E. Mallouk, Peter B. Monk, and Akhlesh Lakhtakia  »View Author Affiliations


Applied Optics, Vol. 52, Issue 5, pp. 966-979 (2013)
http://dx.doi.org/10.1364/AO.52.000966


View Full Text Article

Enhanced HTML    Acrobat PDF (2028 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The rigorous coupled-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic surface-relief grating as its back reflector. The absorptance is a function of the angle of incidence and the polarization state of incident light; the free-space wavelength; and the period, duty cycle, the corrugation height, and the shape of the unit cell of the surface-relief grating. The solar cell was assumed to be made of hydrogenated amorphous-silicon alloys and the back reflector of bulk aluminum. The incidence and the grating planes were taken to be identical. The AM1.5 solar irradiance spectrum was used for computations in the 400–1100 nm wavelength range. Inspection of parametric plots of the solar-spectrum-integrated (SSI) absorption efficiency and numerical optimization using the differential evolution algorithm were employed to determine the optimal surface-relief grating. For direct insolation, the SSI absorption efficiency is maximizable by appropriate choices of the period, the duty cycle, and the corrugation height, regardless of the shape of the corrugation in each unit cell of the grating. A similar conclusion also holds for diffuse insolation, but the maximum efficiency for diffuse insolation is about 20% smaller than for direct insolation. Although a tin-doped indium-oxide layer at the front and an aluminum-doped zinc-oxide layer between the semiconductor material and the backing metallic layer change the optimal depth of the periodic corrugations, the optimal period of the corrugations does not significantly change.

© 2013 Optical Society of America

OCIS Codes
(230.1950) Optical devices : Diffraction gratings
(260.1960) Physical optics : Diffraction theory
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optical Devices

History
Original Manuscript: September 5, 2012
Revised Manuscript: December 5, 2012
Manuscript Accepted: December 30, 2012
Published: February 7, 2013

Citation
Manuel Solano, Muhammad Faryad, Anthony S. Hall, Thomas E. Mallouk, Peter B. Monk, and Akhlesh Lakhtakia, "Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell backed by a metallic surface-relief grating," Appl. Opt. 52, 966-979 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-5-966


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gombert and A. Luque, “Photonics in photovoltaic systems,” Phys. Status Solidi A 205, 2757–2765 (2008). [CrossRef]
  2. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  3. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008). [CrossRef]
  4. M. A. Green and S. Pillai, “Harnessing plasmonics for solar cells,” Nat. Photonics 6, 130–132 (2012). [CrossRef]
  5. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43, 579–581 (1983). [CrossRef]
  6. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34, 2476–2482(1995). [CrossRef]
  7. R. Singh, “Why silicon is and will remain the dominant photovoltaic material,” J. Nanophoton. 3, 032503 (2009). [CrossRef]
  8. S. J. Fonash, Solar Cell Device Physics, 2nd ed. (Academic, 2010), pp. 68–102.
  9. F.-J. Haug, T. Söderström, O. Cubero, V. Terrazzoni-Daudrix, and C. Ballif, “Plasmonic absorption in textured silver back reflectors of thin film solar cells,” J. Appl. Phys. 104, 064509 (2008). [CrossRef]
  10. J. Chen, Q. Wang, and H. Li, “Microstructured design of metallic diffraction gratings for light trapping in thin-film silicon solar cells,” Opt. Commun. 283, 5236–5244(2010). [CrossRef]
  11. S. Xiao, E. Stassen, and N. A. Mortensen, “Ultrathin silicon solar cells with enhanced photocurrents assisted by plasmonic nanostructures,” J. Nanophoton. 6, 061503 (2012). [CrossRef]
  12. A. Naqavi, K. Söderström, F.-J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, “Enhanced light trapping in realistic thin film solar cells using one-dimensional gratings,” Proc. SPIE 8065, 80650A (2011). [CrossRef]
  13. A. Čampa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krč, M. Topič, and M. Zeman, “Optimal design of periodic surface texture for thin-film a-Si:H solar cells,” Prog. Photovoltaics 18, 160–167 (2010). [CrossRef]
  14. M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982). [CrossRef]
  15. N. Chateau and J.-P. Hugonin, “Algorithm for the rigorous coupled-wave analysis of grating diffraction,” J. Opt. Soc. Am. A 11, 1321–1331 (1994). [CrossRef]
  16. M. Agrawal and M. Frei, “Rigorous optical modeling and optimization of thin-film photovoltaic cells with textured transparent conductive oxides,” Prog. Photovolt. 20, 442–451 (2012). [CrossRef]
  17. M. Agrawal, M. Frei, Y. Bhatnagar, T. Repmann, K. Witting, J. Schroeder, and C. Eberspacher, “Comprehensive experimental and numerical optimization of surface morphology of transparent conductive oxide films for tandem thin film photovoltaic cells,” in Proc. 35th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, 2010).
  18. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” J. Global Optim. 11, 341–359 (1997). [CrossRef]
  19. K. Price, R. Storn, and J. Lampinen, Differential Evolution: A Practical Approach to Global Optimization (Springer, 2005).
  20. T. Tušar and B. Filipič, “Differential evolution versus genetic algorithms in multiobjective optimization,” in Evolutionary Multi-Criterion Optimization, S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, eds. (Springer, 2007), pp. 257–271.
  21. M. Faryad, A. S. Hall, G. D. Barber, T. E. Mallouk, and A. Lakhtakia, “Excitation of multiple surface-plasmon-polariton waves guided by the periodically corrugated interface of a metal and a periodic multilayered isotropic dielectric material,” J. Opt. Soc. Am. B 29, 704–713 (2012). [CrossRef]
  22. M. Faryad and A. Lakhtakia, “Grating-coupled excitation of multiple surface plasmon-polariton waves,” Phys. Rev. A 84, 033852 (2011). [CrossRef]
  23. M. G. Moharam, E. B. Grann, and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  24. We used the DEA code available at: http://www1.icsi.berkeley.edu/storn/code.html .
  25. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. Deng, and G. Ganguly, “Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: applications in thin film photovoltaics,” J. Appl. Phys. 92, 2424–2436(2002). [CrossRef]
  26. A. D. Rakić, “Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum,” Appl. Opt. 34, 4755–4767 (1995). [CrossRef]
  27. B. B. Van Aken, C. Devilee, M. Dörenkämper, M. Geusebroek, M. Heijna, J. Löffler, and W. J. Soppe, “PECVD deposition of a-Si:H and μc-Si:H using a linear RF source,” Proc. SPIE 6651, 66510C (2007). [CrossRef]
  28. http://pvcdrom.pveducation.org/APPEND/Am1_5.htm (accessed 21 July 2012).
  29. A. Shishido, I. Diviliansky, G. L. Egan, I. C. Khoo, T. S. Mayer, S. Nishimura, G. L. Egan, and T. E. Mallouk, “Direct fabrication of two-dimensional titania arrays using interference photolithography,” Appl. Phys. Lett. 79, 3332–3334 (2001). [CrossRef]
  30. D. L. Flamm, “Mechanisms of silicon etching in fluorine- and chlorine-containing plasmas,” Pure Appl. Chem. 62, 1709–1720 (1990). [CrossRef]
  31. H. Jansen, M. Boer, R. Legtenberg, and M. J. Elwenspoek, “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control,” J. Micromech. Microeng. 5, 115–120 (1995). [CrossRef]
  32. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science 325, 594–597 (2009). [CrossRef]
  33. R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films 313, 394–397 (1998). [CrossRef]
  34. X.-Y. Gao, Y. Liang, and Q.-G. Lin, “Analysis of the optical constants of aluminum-doped zinc oxide films by using the single-oscillator model,” J. Korean Phys. Soc. 57, 710–714 (2010). [CrossRef]
  35. M. Faryad and A. Lakhtakia, “Enhanced absorption of light due to multiple surface-plasmon-polariton waves,” Proc. SPIE 8110, 81100F (2011). [CrossRef]
  36. I. Dolev, M. Volodarsky, G. Porat, and A. Arie, “Multiple coupling of surface plasmons in quasiperiodic gratings,” Opt. Lett. 36, 1584–1586 (2011). [CrossRef]
  37. M. Faryad and A. Lakhtakia, “Excitation of multiple surface-plasmon-polariton waves using a compound surface-relief grating,” J. Nanophoton. 6, 061701 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited