OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 980–989

Systematic investigation on light intensification by typical subsurface cracks on optical glass surfaces

Lei Zhang, Wei Chen, and Lili Hu  »View Author Affiliations

Applied Optics, Vol. 52, Issue 5, pp. 980-989 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1021 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By using the finite-difference time-domain method, a systematic investigation has been performed to analyze the light field redistribution due to the modulation from typical subsurface cracks on optical glass surfaces. The involved cracks that can occur during surface processing are mainly of three basic types, including the cone, the radial, and the lateral. It is found out that the modulated light intensification strongly depends on the crack type and especially on if the crack is on the front or rear surface. If the cone crack is on the rear surface or lateral crack is on the front surface, a strong field enhancement as large as 2 orders of magnitude can occur. As for the other four cases, i.e., cone crack on the front surface, lateral crack on the rear surface, and radial crack on both the front and rear surfaces, they do not result in a field enhancement of 2 orders of magnitude, but only several times higher than the incident light field. The field enhancement mechanisms for various crack types are compared and discussed in detail. If only from the perspective of laser damage initiation resulting from a modulated high electric field, the most harmful subsurface cracks may be initially the lateral on the front surface and the cone on the rear surface.

© 2013 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(240.6700) Optics at surfaces : Surfaces
(290.5890) Scattering : Scattering, stimulated

ToC Category:
Optics at Surfaces

Original Manuscript: September 5, 2012
Revised Manuscript: December 27, 2012
Manuscript Accepted: January 3, 2013
Published: February 7, 2013

Lei Zhang, Wei Chen, and Lili Hu, "Systematic investigation on light intensification by typical subsurface cracks on optical glass surfaces," Appl. Opt. 52, 980-989 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. P. Hed, D. F. Edwards, and J. B. Davis, “Subsurface damage in optical materials: origin, measurement and removalreport UCRL-99548 (Lawrence Livermore National Laboratory, 1989), pp. 1–17.
  2. J. H. Campbell, “Damage resistant optical glasses for high power lasers: a continuing glass science and technology challenge,” Glass Sci. Technol. 75, 91–108 (2002).
  3. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009). [CrossRef]
  4. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004). [CrossRef]
  5. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. Raether, and I. Thomas, “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998). [CrossRef]
  6. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005). [CrossRef]
  7. C. L. Battersby, L. M. Sheehan, and M. R. Kozlowski, “Effects of wet etch processing on laser-induced damage of fused silica surfaces,” Proc. SPIE 3578, 446–455 (1999). [CrossRef]
  8. T. I. Suratwala, P. E. Miller, P. R. Ehrmann, and R. A. Steele, “Polishing slurry induced surface haze on phosphate laser glasses,” J. Non-Cryst. Solids 351, 2091–2101 (2005). [CrossRef]
  9. A. V. Hamza, W. J. Siekhaus, A. M. Rubenchik, M. Feit, L. L. Chase, S. Demos, M. Savina, M. J. Pellin, M. J. Fluss, M. C. Nostrand, M. Runkel, B. W. Choi, M. Staggs, and I. D. Hutcheon, “Engineered defects for investigation of laser induced damage of fused silica at 355 nm,” Proc. SPIE 4679, 96–105 (2002). [CrossRef]
  10. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94, 151114 (2009). [CrossRef]
  11. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35, 2702–2704 (2010). [CrossRef]
  12. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973). [CrossRef]
  13. F. Y. Génin, A. Salleo, T. V. Pistor, and L. L. Chase, “Role of light intensification by cracks in optical breakdown on surfaces,” J. Opt. Soc. Am. A 18, 2607–2616 (2001). [CrossRef]
  14. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995). [CrossRef]
  15. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004). [CrossRef]
  16. M. Crisp, N. Boling, and G. Dubé, “Importance of Fresnel reflections in laser surface damage of transparent dielectrics,” Appl. Phys. Lett. 21, 364–366 (1972). [CrossRef]
  17. B. Lawn and R. Wilshaw, “Indentation fracture: principles and applications,” J. Mater. Sci. 10, 1049–1081 (1975). [CrossRef]
  18. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352, 5601–5617 (2006). [CrossRef]
  19. J. H. Campbell, and T. I. Suratwala, “Nd-doped phosphate glasses for high-energy/high-peak-power lasers,” J. Non-Cryst. Solids 263–264, 318–341 (2000). [CrossRef]
  20. A. Salleo, F. Y. Génin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE 3244, 341–347 (1998). [CrossRef]
  21. F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000). [CrossRef]
  22. S. Zhu, A. W. Yu, D. Hawley, and R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986). [CrossRef]
  23. L. Li, X. Xiang, X. Zu, X. Jiang, X. Yuan, and W. Zheng, “The electric field modulation by three-dimensional crack on fused silica subsurface,” Optik 122, 1423–1425 (2011). [CrossRef]
  24. T. I. Suratwala, J. H. Campbell, P. E. Miller, C. B. Thorsness, M. O. Riley, P. R. Ehrmann, and R. A. Steele, “Phosphate laser glass for NIF: production status, slab selection, and recent technical advances,” Proc. SPIE 5341, 102–113 (2004). [CrossRef]
  25. Laboratory for Laser Energetics (LLE), “Subsurface damage in microgrinding optical glasses,” LLE Rev. 73, 45–49 (1997).
  26. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited