OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 990–996

Ultra-compact and fabrication-tolerant polarization rotator based on a bend asymmetric-slab waveguide

Tongtong Cao, Shaowu Chen, Yonghao Fei, Libin Zhang, and Qing-Yang Xu  »View Author Affiliations

Applied Optics, Vol. 52, Issue 5, pp. 990-996 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze a polarization rotator based on a bend asymmetric-slab waveguide on the silicon-on-insulator platform. The device can be fabricated using standard complementary metal–oxide–semiconductor process involving only two dry etching steps. Compared with the formerly reported polarization rotators based on two-step etching, our introduced device demonstrates a significant improvement for fabrication tolerance. Furthermore, an ultra compact structure of 5μm conversion length, an insertion loss of only 0.5 dB, and an extinction ratio of >40dB for both TE to TM polarization conversion and TM to TE polarization conversion are exhibited. Operation wavelength and the influence of environmental temperature on our device are also discussed.

© 2013 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Integrated Optics

Original Manuscript: September 24, 2012
Revised Manuscript: December 19, 2012
Manuscript Accepted: December 22, 2012
Published: February 7, 2013

Tongtong Cao, Shaowu Chen, Yonghao Fei, Libin Zhang, and Qing-Yang Xu, "Ultra-compact and fabrication-tolerant polarization rotator based on a bend asymmetric-slab waveguide," Appl. Opt. 52, 990-996 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Krishnamoorthy, R. Ho, X. Zheng, H. Schwetman, J. Lexau, P. Koka, G. Li, I. Shubin, and J. Cunningham, “Computer systems based on silicon photonic interconnects,” Proc. IEEE 97, 1337–1361 (2009). [CrossRef]
  2. D. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009). [CrossRef]
  3. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “200 Gbps photonic integrated chip on silicon platform,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE, 2008), pp. 368–370.
  4. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor,” Nature 427, 615–618 (2004). [CrossRef]
  5. M. Foster, A. Turner, J. Sharping, B. Schmidt, M. Lipson, and A. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441, 960–963 (2006). [CrossRef]
  6. K. Voigt, L. Zimmermann, G. Winzer, M. Schnarrenberger, T. Mitze, J. Bruns, and K. Petermann, “Silicon-on-insulator (SOI) delay-line interferometer with low polarization-dependent wavelength shift,” presented at 13th European Conference on Integrated Optics, Denmark, 25–27 April 2007, paper ThC2.
  7. T. Barwicz, M. Watts, M. Popović, P. Rakich, L. Socci, F. Kärtner, E. Ippen, and H. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007). [CrossRef]
  8. J. Zhang, T. Liow, M. Yu, G. Lo, and D. Kwong, “Silicon waveguide based TE mode converter,” Opt. Express 18, 25264–25270 (2010). [CrossRef]
  9. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design rules for slanted-angle polarization rotators,” J. Lightwave Technol. 23, 432–445 (2005). [CrossRef]
  10. H. Deng, D. O. Yevick, and S. K. Chaudhuri, “Bending characteristics of asymmetric SOI polarization rotators,” IEEE Photon. Technol. Lett. 17, 2113–2115 (2005). [CrossRef]
  11. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Fabrication tolerance of asymmetric silicon-on-insulator polarization rotators,” J. Opt. Soc. Am. A 23, 1741–1745 (2006). [CrossRef]
  12. J. Yamauchi, M. Yamanoue, and H. Nakano, “A short polarization converter using a triangular waveguide,” J. Lightwave Technol. 26, 1708–1714 (2008). [CrossRef]
  13. Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “Higher-order-mode assisted silicon-on-insulator 90 degree polarization rotator,” Opt. Express 17, 20694–20699 (2009). [CrossRef]
  14. L. Liu, Y. Ding, K. Yvind, and J. Hvam, “Efficient and compact TE–TM polarization converter built on silicon-on-insulator platform with a simple fabrication process,” Opt. Lett. 36, 1059–1061 (2011). [CrossRef]
  15. Y. Ding, L. Liu, C. Peucheret, and H. Ou, “Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler,” Opt. Express 20, 20021–20027 (2012). [CrossRef]
  16. D. Leung, B. Rahman, and K. Grattan, “Numerical analysis of asymmetric silicon nanowire waveguide as compact polarization rotator,” IEEE Photon. J 3, 381–389 (2011). [CrossRef]
  17. A. Velasco, M. Calvo, P. Cheben, A. Ortega-Moñux, J. Schmid, C. Ramos, Í. Fernandez, J. Lapointe, M. Vachon, S. Janz, and D. Xu, “Ultracompact polarization converter with a dual subwavelength trench built in a silicon-on-insulator waveguide,” Opt. Lett. 37, 365–367 (2012). [CrossRef]
  18. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25, 747–753(2008). [CrossRef]
  19. FIMMWAVE/FIMMPROP, Version 4.6, Photon Design Ltd., http://www.photond.com .
  20. W. W. Lui, T. Hirono, and W.-P. Huang, “Polarization rotation in semiconductor bending waveguides: a coupled-mode theory formulation,” J. Lightwave Technol. 16, 929–936 (1998). [CrossRef]
  21. M. Uenuma and T. Motooka, “Temperature-independent silicon waveguide optical filter,” Opt. Lett. 34, 599–601 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited