OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 5 — Feb. 10, 2013
  • pp: 997–1005

Exploring underwater target detection by imaging polarimetry and correlation techniques

M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu  »View Author Affiliations

Applied Optics, Vol. 52, Issue 5, pp. 997-1005 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (767 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Underwater target detection is investigated by combining active polarization imaging and optical correlation-based approaches. Experiments were conducted in a glass tank filled with tap water with diluted milk or seawater and containing targets of arbitrary polarimetric responses. We found that target estimation obtained by imaging with two orthogonal polarization states always improves detection performances when correlation is used as detection criterion. This experimental study illustrates the potential of polarization imaging for underwater target detection and opens interesting perspectives for the development of underwater imaging systems.

© 2013 Optical Society of America

OCIS Codes
(100.5010) Image processing : Pattern recognition
(110.0113) Imaging systems : Imaging through turbid media
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Imaging Systems

Original Manuscript: September 24, 2012
Revised Manuscript: November 22, 2012
Manuscript Accepted: December 21, 2012
Published: February 7, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

M. Dubreuil, P. Delrot, I. Leonard, A. Alfalou, C. Brosseau, and A. Dogariu, "Exploring underwater target detection by imaging polarimetry and correlation techniques," Appl. Opt. 52, 997-1005 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Schettini and S. Corchs, “Underwater image processing: state of the art of restoration and image enhancement methods,” EURASIP J. Adv. Signal Process. 2010, 746052 (2010). [CrossRef]
  2. S. Bazeille, I. Quidu, and L. Jaulin, “Color-based underwater object recognition using water light attenuation,” Intel. Serv. Robotics 5, 109–118 (2012). [CrossRef]
  3. D. M. Kocak, F. R. Dalgleish, F. M. Caimi, and Y. Y. Schechner, “A focus on recent developments and trends in underwater imaging,” Mar. Technol. Soc. J. 42, 52–67 (2008). [CrossRef]
  4. F. Bonin, A. Burguera, and G. Olivier, “Imaging systems for advanced underwater vehicles,” J. Mar. Res. 13, 65–86 (2011).
  5. A. Kouzoubov, M. J. Brennan, and J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873–3885 (1998). [CrossRef]
  6. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984). [CrossRef]
  7. Y. You, A. Tonizzo, A. A. Gilerson, M. E. Cummings, P. Brady, J. M. Sullivan, M. S. Twardowski, H. M. Dierssen, S. A. Ahmed, and G. W. Kattawar, “Measurements and simulations of polarization states of underwater light in clear oceanic waters,” Appl. Opt. 50, 4873–4893 (2011). [CrossRef]
  8. Y. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE J. Oceanic Eng. 30, 570–587 (2005). [CrossRef]
  9. P. C. Y. Chang, J. C. Flitton, K. I. Hopcraft, E. Jakeman, D. L. Jordan, and J. G. Walker, “Improving visibility depth in passive underwater imaging by use of polarization,” Appl. Opt. 42, 2794–2803 (2003). [CrossRef]
  10. G. W. Kattawar and M. J. Rakovic, “Virtues of Mueller matrix imaging for underwater target detection,” Appl. Opt. 38, 6431–6438 (1999). [CrossRef]
  11. J. Cariou, B. Le Jeune, J. Lotrian, and Y. Guern, “Polarization effects of seawater and underwater targets,” Appl. Opt. 29, 1689–1695 (1990). [CrossRef]
  12. G. D. Lewis, D. L. Jordan, and P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937–3944 (1999). [CrossRef]
  13. G. D. Gilbert and J. C. Pernicka, “Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,” Appl. Opt. 6, 741–746 (1967). [CrossRef]
  14. L. Bartolini, L. De Dominicis, G. Fornetti, M. Francucci, M. Guarneri, C. Poggi, and R. Ricci, “Improvement in underwater phase measurement of an amplitude-modulated laser beam by polarimetric techniques,” Opt. Lett. 32, 1402–1404 (2007). [CrossRef]
  15. L. Mullen, B. Cochenour, W. Rabinovich, R. Mahon, and J. Muth, “Backscatter suppression for underwater modulating retroreflector links using polarization discrimination,” Appl. Opt. 48, 328–337 (2009). [CrossRef]
  16. J. G. Walker, P. C. Y. Chang, and K. I. Hopcraft, “Visibility depth improvement in active polarization imaging in scattering media,” Appl. Opt. 39, 4933–4941 (2000). [CrossRef]
  17. D. A. Miller and E. L. Dereniak, “Selective polarization imager for contrast enhancements in remote scattering media,” Appl. Opt. 51, 4092–4102 (2012). [CrossRef]
  18. M. Boffety, F. Galland, and A. G. Allais, “Influence of polarization filtering on image registration precision in underwater conditions,” Opt. Lett. 37, 3273–3275 (2012). [CrossRef]
  19. T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. PAMI 31, 385–399 (2009). [CrossRef]
  20. I. Leonard, A. Alfalou, M. S. Alam, and A. Arnold-Bos, “Adaptive nonlinear fringe-adjusted joint transform correlator,” Opt. Eng. 51, 098201 (2012). [CrossRef]
  21. J. Jaffe, “Computer modeling and the design of optimal underwater imaging systems,” IEEE Ocean. Eng. 15, 101–110 (1990). [CrossRef]
  22. A. D. Kim and M. Moscoso, “Backscattering of circularly polarized pulses,” Opt. Lett. 27, 1589–1591 (2002). [CrossRef]
  23. G. A. Gorman, “Field deployable dynamic lightning system for turbid water imaging,” M. S. Thesis, Massachusetts Institute of Technology, Cambridge, USA (2011).
  24. A. Alfalou and C. Brosseau, “Understanding correlation techniques for face recognition: from basics to applications,” in Face Recognition, Milos Oravec, ed. (In-Tech, 2010), Available from: http://www.intechopen.com/articles/show/title/understanding-correlation-techniques-for-face-recognition-from-basics-to-applications .
  25. I. Leonard, A. Alfalou, and C. Brosseau, “Spectral optimized asymmetric segmented phase-only correlation filter,” Appl. Opt. 51, 2638–2650 (2012). [CrossRef]
  26. J. L. Horner, “Metrics for assessing pattern-recognition performance,” Appl. Opt. 31, 165–166 (1992). [CrossRef]
  27. A. Alfalou, C. Brosseau, P. Katz, and M. S. Alam, “Decision optimization for face recognition based on an alternate correlation plane quantification metric,” Opt. Lett. 37, 1562–1564 (2012). [CrossRef]
  28. P. Katz, A. Alfalou, C. Brosseau, and M. S. Alam, “Correlation and independent component analysis based approaches for biometric recognition,” in Face Recognition: Methods, Applications and Technology, A. Quaglia and C. M. Epifano (eds.). (Nova Science Publishers, 2012) Chap. 11, pp. 201–229.
  29. I. Leonard, A. Alfalou, and C. Brosseau, “Face recognition based on composite correlation filters: analysis of their performances,” in Face Recognition: Methods, Applications and Technology, A. Quaglia and C. M. Epifano (eds.). (Nova Science Publishers, 2012), Chap. 3, pp. 57–80.
  30. Y. Ouerhani, M. Jridi, and A. Alfalou, “Implementation techniques of high-order FFT into low-cost FPGA,” 54th IEEE International Midwest Symposium on Circuits and Systems, Yonsei University, Seoul, Korea, August 7–10, 2011.
  31. Y. Ouerhani, M. Jridi, and A. Alfalou, “Fast face recognition approach using a graphical processing unit,” in Proceedings of IST: International Conference on Imaging Systems and Techniques (IEEE, 2010), pp. 80–84.
  32. P. C. Miller and R. S. Caprari, “Demonstration of improved automatic target-recognition performance by moment analysis of correlation peaks,” Appl. Opt. 38, 1325–1331 (1999). [CrossRef]
  33. F. T. S. Yu and D. A. Gregory, “Optical pattern recognition: architectures and techniques,” Proc. IEEE 84, 733–752 (1996). [CrossRef]
  34. A. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory 10, 139–145 (1964). [CrossRef]
  35. C. S. Weaver and J. W. Goodman, “A technique for optically convolving two functions,” Appl. Opt. 5, 1248–1249 (1966). [CrossRef]
  36. Y. Piederrière, F. Boulvert, J. Cariou, B. Le Jeune, Y. Guern, and G. Le Brun, “Backscattered speckle size as a function of polarization: influence of particle-size and -concentration,” Opt. Express 13, 5030–5039 (2005). [CrossRef]
  37. P. Clemenceau, A. Dogariu, and J. Stryewski, “Polarization active imaging,” in Laser Radar Technology and Applications V, Proc. SPIE 4035, 401–409 (2000).
  38. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef]
  39. T. Kohlgraf-Owens and A. Dogariu, “Spatially resolved scattering polarimeter,” Opt. Lett. 34, 1321 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited