OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1122–1131

Characteristic analysis of aspheric quasi-optical lens antenna in millimeter-wave radiometer imaging system

Won-Gyum Kim, Nam-Won Moon, Manoj Kumar Singh, Hwang-Kyeom Kim, and Yong-Hoon Kim  »View Author Affiliations

Applied Optics, Vol. 52, Issue 6, pp. 1122-1131 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quasi-optical imaging systems require low blurring effect and large depth of focus (DOF) to get an acceptable sharpness of the image. To reduce aberration-limited blurring, the aspheric convex plano lenses with an aperture diameter of 350 mm are designed in W-band. We analyzed theoretically and experimentally the millimeter-wave band lens characteristics, such as beam spot size, spatial resolution (SR), and DOF, via f-number. It is first used to verify the DOF through f-number in the system-level test with the developed W-band radiometer imaging system. We have confirmed that the larger f-number of quasi-optical lens leads to a larger DOF but a lower SR.

© 2013 Optical Society of America

OCIS Codes
(040.1240) Detectors : Arrays
(110.0110) Imaging systems : Imaging systems
(220.3630) Optical design and fabrication : Lenses
(350.4010) Other areas of optics : Microwaves
(080.4225) Geometric optics : Nonspherical lens design
(280.4991) Remote sensing and sensors : Passive remote sensing

ToC Category:
Imaging Systems

Original Manuscript: October 22, 2012
Revised Manuscript: January 4, 2013
Manuscript Accepted: January 6, 2013
Published: February 11, 2013

Won-Gyum Kim, Nam-Won Moon, Manoj Kumar Singh, Hwang-Kyeom Kim, and Yong-Hoon Kim, "Characteristic analysis of aspheric quasi-optical lens antenna in millimeter-wave radiometer imaging system," Appl. Opt. 52, 1122-1131 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Samluk, C. A. Schuetz, T. Dillon, E. L. Stein, A. Robbins, D. G. Mackrides, R. D. Martin, J. Wilson, C. Chen, and D. W. Prather, “Q-band millimeter wave imaging in the far-field enabled by optical upconversion methodology,” J. Infrared Millimeter Terahertz Waves 33, 54–66 (2012). [CrossRef]
  2. S. Yeom, D. S. Lee, J. Y. Son, M. K. Jung, Y. Jang, S. W. Jung, and S. J. Lee, “Real-time outdoor concealed-object detection with passive millimeter wave imaging,” Opt. Express 19, 2530–2536 (2011). [CrossRef]
  3. J. J. Lynch, P. A. Macdonald, H. P. Moyer, and R. G. Nagele, “Passive millimeter wave imaging sensors for commercial markets,” Appl. Opt. 49, E7–E12 (2010). [CrossRef]
  4. C. F. Cull, D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010). [CrossRef]
  5. S. Y. Li, B. L. Ren, H. J. Sun, W. D. Hu, and X. Lv, “Modified wavenumber domain algorithm for three-dimensional millimeter-wave imaging,” Prog. Electromagn. Res. 124, 35–53 (2012). [CrossRef]
  6. F. Gumbmann and L. P. Schmidt, “Millimeter-wave imaging with optimized sparse periodic array for short-range applications,” IEEE Trans. Geosci. Remote Sens. 49, 3629–3638 (2011). [CrossRef]
  7. K. Haddadi, D. Glay, and T. Lasri, “A 60 Ghz scanning near-field microscope with high spatial resolution sub-surface imaging,” IEEE Microw. Wireless Compon. Lett. 21, 625–627 (2011). [CrossRef]
  8. F. Qi, V. Tavakol, I. Ocket, P. Xu, D. Schreurs, J. K. Wang, and B. Nauwelaers, “Millimeter wave imaging system modeling: spatial frequency domain calculation versus spatial domain calculation,” J. Opt. Soc. Am. A 27, 131–140 (2010). [CrossRef]
  9. N. N. Wang, J. H. Qiu, P. Y. Zhang, and W. B. Deng, “Passive millimeter wave focal plane array imaging technology,” J. Infrared Millimeter Waves 30, 419–424 (2011). [CrossRef]
  10. E. L. Jacobs and O. Furxhi, “Target identification and navigation performance modeling of a passive millimeter wave imager,” Appl. Opt. 49, E94–E105 (2010). [CrossRef]
  11. F. Qi, V. Tavakol, D. Schreurs, and B. Nauwelaers, “Limitations of approximations towards Fourier optics for indoor active millimeter wave imaging systems,” Prog. Electromagn. Res. 109, 245–262 (2010). [CrossRef]
  12. F. Hu and Y. Feng, “Passive millimeter wave focal plane imaging method combined with interferometry,” J. Infrared Millimeter Waves 28, 382–385 (2009). [CrossRef]
  13. A. Rolland, M. Ettorre, A. V. Boriskin, L. Le Coq, and R. Sauleau, “Axisymmetric resonant lens antenna with improved directivity in Ka- band,” IEEE Antennas Wireless Propag. Lett. 10, 37–40 (2011). [CrossRef]
  14. Z. X. Wang and W. B. Dou, “Full-wave analysis of monopulse dielectric lens antennas at W-band,” J. Infrared Millimeter Terahertz Waves 31, 151–161 (2010). [CrossRef]
  15. B. Fuchs, R. Golubovic, A. K. Skrivervik, and J. R. Mosig, “Spherical lens antenna designs with particle swarm optimization,” Microw. Opt. Technol. Lett. 52, 1655–1659 (2010). [CrossRef]
  16. A. H. Lettington, D. Dunn, M. Attia, and I. M. Blankson, “Passive millimetre-wave imaging architectures,” J. Opt. A 5, S103–S110 (2003). [CrossRef]
  17. W. G. Kim, N. W. Moon, J. M. Kang, and Y. H. Kim, “Loss measuring of large aperture quasi-optics for W-band imaging radiometer system,” Prog. Electromagn. Res. 125, 295–309 (2012). [CrossRef]
  18. C. D. Meinhart and S. T. Wereley, “The theory of diffraction-limited resolution in microparticle image velocimetry,” Meas. Sci. Technol. 14, 1047–1053 (2003). [CrossRef]
  19. Technical guide on fundamental optics, http://www.cvimellesgriot.com/ .
  20. P. F. Goldsmith, Quasi-optical Systems: Gaussian Beam Quasi-optical Propagation and Applications, 4th ed. (IEEE, 1998).
  21. Technical document about lens theory from http://www.lasercomponents.com/de/ .
  22. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE, 2001).
  23. http://www.opticalres.com/ .
  24. http://www.cst.com/ .
  25. K. W. Gyum, J. P. Thakur, and Y. H. Kim, “Efficient DRW antenna for quasi-optics feed in W-band imaging radiometer system,” Microw. Opt. Technol. Lett. 52, 1221–1223 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited