OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1155–1160

Slow light in an alternative row of ellipse-hole photonic crystal waveguide

Yameng Xu, Lei Xiang, Eric Cassan, Dingshan Gao, and Xinliang Zhang  »View Author Affiliations


Applied Optics, Vol. 52, Issue 6, pp. 1155-1160 (2013)
http://dx.doi.org/10.1364/AO.52.001155


View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High normalized delay-bandwidth product (NDBP) and wideband slow light are achieved in an alternative row of ellipse-hole photonic crystal waveguide. Two different criteria of flat ratio are adopted. Under a constant group index criterion, a high NDBP of 0.446 with a group index of 42 and a bandwidth of 16.4 nm are obtained by plane wave expansion calculations, while under a low dispersion criterion, the NDBP, group index, and bandwidth come to 0.352, 41, 13.1 nm, respectively. Low dispersion slow light propagation is numerically demonstrated by studying the relative temporal pulse-width spreading with the two-dimensional finite-difference time-domain method. As a whole, the presented results give indications about the “ultimate” possible improvement of slow light waveguide metrics by using noncircular holes.

© 2013 Optical Society of America

OCIS Codes
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystal Waveguides

History
Original Manuscript: September 21, 2012
Revised Manuscript: December 15, 2012
Manuscript Accepted: December 27, 2012
Published: February 11, 2013

Citation
Yameng Xu, Lei Xiang, Eric Cassan, Dingshan Gao, and Xinliang Zhang, "Slow light in an alternative row of ellipse-hole photonic crystal waveguide," Appl. Opt. 52, 1155-1160 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-6-1155


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  2. F. Long, H. Tian, and Y. Ji, “A study of dynamic modulation and buffer capability in low dispersion photonic crystal waveguides,” J. Lightwave Technol. 28, 1139–1143 (2010). [CrossRef]
  3. Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011). [CrossRef]
  4. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef]
  5. X. Chen, Y. S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54  pJ/bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett. 34, 602–604 (2009). [CrossRef]
  6. R. Iliew, C. Etrich, T. Pertsch, and F. Lederer, “Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals,” Phys. Rev. B 77, 115124 (2008). [CrossRef]
  7. T. F. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008). [CrossRef]
  8. M. Ar, T. Doll, J. Kovi, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000). [CrossRef]
  9. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  10. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovi, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010). [CrossRef]
  11. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006). [CrossRef]
  12. A. Y. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  13. F. Long, H. Tian, and Y. Ji, “Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes,” Appl. Opt. 49, 4808–4813 (2010). [CrossRef]
  14. S. Kubo, D. Mori, and T. Baba, “Low-group-velocity and low-dispersion slow light in photonic crystal waveguides,” Opt. Lett. 32, 2981–2983 (2007). [CrossRef]
  15. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  16. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008). [CrossRef]
  17. R. Hao, E. Cassan, H. Kurt, X. Le Roux, D. Marris-Morini, L. Vivien, H. Wu, Z. Zhou, and X. Zhang, “Novel slow light waveguide with controllable delay-bandwidth product and ultra-low dispersion,” Opt. Express 18, 5942–5950 (2010). [CrossRef]
  18. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010). [CrossRef]
  19. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328(2007). [CrossRef]
  20. F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008). [CrossRef]
  21. S. Rawal, R. Sinha, and R. M. De La Rue, “Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal,” Opt. Express 17, 13315–13325 (2009). [CrossRef]
  22. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  23. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31, 2972–2974 (2006). [CrossRef]
  24. Y. Hamachi, S. Kubo, and T. Baba, “Slow light with low dispersion and nonlinear enhancement in a lattice-shifted photonic crystal waveguide,” Opt. Lett. 34, 1072–1074 (2009). [CrossRef]
  25. D. Gao and Z. Zhou, “Nonlinear equation method for band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. 88, 163105 (2006). [CrossRef]
  26. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009). [CrossRef]
  27. R. Hao, E. Cassan, H. Kurt, J. Hou, D. Marris-Morini, L. Vivien, D. Gao, Z. Zhou, and X. Zhang, “Novel kind of semislow light photonic crystal waveguides with large delay-bandwidth product,” IEEE Photon. Technol. Lett. 22, 844–846 (2010). [CrossRef]
  28. J. Ma and C. Jiang, “Demonstration of ultraslow modes in asymmetric line-defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 20, 1237–1239 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited