OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1168–1172

Low-loss high-speed speckle reduction using a colloidal dispersion

Brandon Redding, Graham Allen, Eric R. Dufresne, and Hui Cao  »View Author Affiliations


Applied Optics, Vol. 52, Issue 6, pp. 1168-1172 (2013)
http://dx.doi.org/10.1364/AO.52.001168


View Full Text Article

Enhanced HTML    Acrobat PDF (367 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple and robust approach to reduce laser speckle, which has limited the adoption of lasers in imaging and display applications. We use colloidal solutions that can quickly reduce speckle contrast due to the Brownian motion of the scattering particles. The high insertion loss associated with propagation through a colloidal solution was overcome by using white paint to cover the sides of the cuvette and an optical fiber to deliver the laser light deep into the colloidal solution, enabling transmission greater than 90%. The diffused laser output followed a Lambertian distribution and produced speckle contrast below 4% at an integration time of 129 μs. The ability for colloidal solutions to achieve fast speckle reduction without power consumption while maintaining high transmission, low cost, a compact size, and a long lifetime makes our approach useful for a wide range of laser imaging and projection applications.

© 2013 Optical Society of America

OCIS Codes
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(170.0110) Medical optics and biotechnology : Imaging systems
(110.0113) Imaging systems : Imaging through turbid media

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: October 15, 2012
Revised Manuscript: January 14, 2013
Manuscript Accepted: January 15, 2013
Published: February 13, 2013

Virtual Issues
Vol. 8, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Brandon Redding, Graham Allen, Eric R. Dufresne, and Hui Cao, "Low-loss high-speed speckle reduction using a colloidal dispersion," Appl. Opt. 52, 1168-1172 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-6-1168


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, F79–F98 (2010). [CrossRef]
  2. J. D. Rigden and E. I. Gordon, “The granularity of scattered optical maser light,” Proc. Inst. Radio Eng. 50, 2367–2368 (1962).
  3. J. W. Goodman, “Optical methods for suppressing speckle,” in Speckle Phenomena in Optics (Roberts, 2007), pp. 141–186.
  4. J. M. Artigas, A. Felipe, and M. J. Buades, “Contrast sensitivity of the visual system in speckle imagery,” J. Opt. Soc. Am. A 11, 2345–2349 (1994). [CrossRef]
  5. A. G. Geri and L. A. Williams, “Perceptual assessment of laser-speckle contrast,” J. Soc. Inf. Disp. 20, 22–27 (2012). [CrossRef]
  6. T. S. McKechnie, “Speckle reduction,” in Topics in Applied Physics, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 123–170.
  7. J. G. Manni and J. W. Goodman, “Versatile method for achieving 1% speckle contrast in large-venue laser projection displays using a stationary multimode optical fiber,” Opt. Express 20, 11288–11315 (2012). [CrossRef]
  8. A. H. Dhalla, J. V. Migacz, and J. A. Izatt, “Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources,” Opt. Lett. 35, 2305–2307 (2010). [CrossRef]
  9. B. Dingel, S. Kawata, and S. Minami, “Speckle reduction with virtual incoherent laser illumination using a modified fiber array,” Optik 94, 132–136 (1993).
  10. B. Dingel and S. Kawata, “Laser-diode microscope with fiber illumination,” Opt. Commun. 93, 27–32 (1992). [CrossRef]
  11. J. Seurin, G. Xu, B. Guo, A. Miglo, Q. Wang, P. Pradhan, J. D. Wynn, V. Khalfin, W. Zou, C. Ghosh, and R. Van Leeuwen, “Efficient vertical-cavity surface-emitting lasers for infrared illumination applications,” Proc. SPIE 7952, 79520G (2011). [CrossRef]
  12. B. Redding, M. A. Choma, and H. Cao, “Spatial coherence of random laser emission,” Opt. Lett. 36, 3404–3406 (2011). [CrossRef]
  13. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6, 355–359 (2012). [CrossRef]
  14. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998). [CrossRef]
  15. S. Lowenthal and D. Joyeux, “Speckle removal by a slowly moving diffuser associated with a motionless diffuser,” J. Opt. Soc. Am. 61, 847–851 (1971). [CrossRef]
  16. M. N. Akram, Z. Tong, G. Ouyang, X. Chen, and V. Kartashov, “Laser speckle reduction due to spatial and angular diversity introduced by fast scanning micromirror,” Appl. Opt. 49, 3297–3304 (2010). [CrossRef]
  17. J. I. Trisnadi, “Hadamard speckle contrast reduction,” Opt. Lett. 29, 11–13 (2004). [CrossRef]
  18. M. N. Akram, V. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35, 444–446 (2010). [CrossRef]
  19. A. L. Andreev, I. N. Kompanets, M. V. Minchenko, E. P. Pozhidaev, and T. B. Andreeva, “Speckle suppression using a liquid-crystal cell,” Quantum Electron. 38, 1166–1170 (2008). [CrossRef]
  20. G. Ouyang, Z. Tong, M. N. Akram, K. Wang, V. Kartashov, X. Yan, and X. Chen, “Speckle reduction using a motionless diffractive optical element,” Opt. Lett. 35, 2852–2854 (2010). [CrossRef]
  21. F. Riechert, G. Bastian, and U. Lemmer, “Laser speckle reduction via colloidal-dispersion-filled projection screens,” Appl. Opt. 48, 3742–3749 (2009). [CrossRef]
  22. I. D. Morrison and S. Ross, Colloidal Dispersions: Suspensions, Emulsions, and Foams (Wiley, 2002).
  23. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134–1137 (1988). [CrossRef]
  24. M. C. W. van Rossum and Th. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999). [CrossRef]
  25. J. J. Chen and C. T. Lin, “Freeform surface design for a light-emitting diode-based collimating lens,” Opt. Eng. 49, 093001 (2010). [CrossRef]
  26. T. Kari, J. Gadegaard, T. Sndergaard, T. G. Pedersen, and K. Pedersen, “Reliability of point source approximations in compact LED lens designs,” Opt. Express 19, A1190–A1195 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited