OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1211–1217

Femtosecond laser-induced microwelding of silver and copper

Hong Huang, Anming Hu, Peng Peng, Walter Winston Duley, and Yunhong Zhou  »View Author Affiliations

Applied Optics, Vol. 52, Issue 6, pp. 1211-1217 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (971 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Femtosecond (fs) laser irradiation has been shown to be effective for welding transparent materials and for transparent materials to metals. However, to date there is little work regarding similar applications in welding/bonding of metals. In this article, we for the first time to the best of our knowledge report on fs laser-induced microwelding of Ag microwires and Cu substrates. The influence of laser pulse number and fluence on fs laser microwelding is studied to explore an optimum welding window. Morphology analysis indicates that the primary weld of the Ag microwire and the Cu substrate was located at the edge of the Ag microwire and produced via the redeposition and local melting-induced welding of the ablated materials.

© 2013 Optical Society of America

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Ultrafast Optics

Original Manuscript: November 1, 2012
Revised Manuscript: January 10, 2013
Manuscript Accepted: January 22, 2013
Published: February 13, 2013

Hong Huang, Anming Hu, Peng Peng, Walter Winston Duley, and Yunhong Zhou, "Femtosecond laser-induced microwelding of silver and copper," Appl. Opt. 52, 1211-1217 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. W. Duley, Laser Welding (Wiley, 1999).
  2. Y. Zhou, A. Hu, M. I. Khan, W. Wu, B. Tam, and M. Yavuz, “Recent progress in micro and nano-joining,” J. Phys. Conf. Ser. 165, 012012 (2009). [CrossRef]
  3. B. Tam, M. I. Khan, and Y. Zhou, “Mechanical and functional properties of laser-welded Ti-55.8 Wt Pct Ni nitinol wires,” Metall. Mater. Trans. A 42, 2166–2175 (2011). [CrossRef]
  4. G. S. Zou, Y. D. Huang, A. Pequegnat, X. G. Li, M. I. Khan, and Y. Zhou, “Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 low-carbon vacuum melted stainless steel: part I. Mechanism of joint formation,” Metall. Mater. Trans. A 43, 1223–1233 (2012). [CrossRef]
  5. Y. D. Huang, A. Pequegnat, G. S. Zou, J. C. Feng, M. I. Khan, and Y. Zhou, “Crossed-wire laser microwelding of Pt-10 Pct Ir to 316 LVM stainless steel: part II. Effect of orientation on joining mechanism,” Metall. Mater. Trans. A 43, 1234–1243 (2012). [CrossRef]
  6. Z. W. Zhong, “Wire bonding using copper wire,” Microelectron. Int. 26, 10–16 (2009). [CrossRef]
  7. L. England, and T. Jiang, “Reliability of Cu wire bonding to Al metallization,” in Proceedings of Electronic Components and Technology Conference (IEEE, 2007), pp. 1604–1613.
  8. H. Chen, S. W. Ricky Lee, and Y. T. Ding, “Evaluation of bond ability and reliability of single crystal copper wire bonding,” in Proceedings of High Density Microsystem Design and Packaging and Component Failure Analysis Conference (IEEE, 2005), pp. 1–7.
  9. S. Y. Hong, C. J. Hang, and C. Q. Wang, “Experimental research of copper wire ball bonding,” in Proceedings of the Sixth International Conference on Electronic Packaging Technology (IEEE, 2005), pp. 1–5.
  10. Y. H. Tian, I. Lum, S. J. Won, S. H. Park, J. P. Jung, M. Mayer, and Y. Zhou, “Experimental study of ultrasonic wedge bonding with copper wire,” in Proceedings of the 6th International Conference on Electronic Packaging Technology (IEEE, 2005), pp. 389–393.
  11. N. Bärsch, K. Körber, A. Ostendorf, and K. H. Tönshoff, “Ablation and cutting of planar silicon devices using femtosecond laser pulses,” Appl. Phys. A 77, 237–242 (2003). [CrossRef]
  12. C. Li, S. Nikumb, and F. Wong, “An optimal process of femtosecond laser cutting of NiTi shape memory alloy for fabrication of miniature devices,” Opt. Lasers Eng. 44, 1078–1087 (2006). [CrossRef]
  13. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912–1914 (2001). [CrossRef]
  14. G. Kamlage, T. Bauer, A. Ostendorf, and B. N. Chichkov, “Deep drilling of metals by femtosecond laser pulses,” Appl. Phys. A 77, 307–310 (2003). [CrossRef]
  15. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79, 725–727 (2001). [CrossRef]
  16. B. Tan, N. R. Sivakumar, and K. Venkatakrishnan, “Direct grating writing using femtosecond laser interference fringes formed at the focal point,” J. Opt. Pure Appl. Opt. 7, 169–174 (2005). [CrossRef]
  17. T. Tamaki, W. Watanabe, J. Nishii, and K. Itoh, “Welding of transparent materials using femtosecond laser pulses,” Jpn. J. Appl. Phys. 44, 687–689 (2005). [CrossRef]
  18. T. Tamaki, W. Watanabe, and K. Itoh, “Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm,” Opt. Express 14, 10460–10468 (2006). [CrossRef]
  19. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, and J. Nishii, “Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses,” Appl. Phys. Lett. 89, 021106 (2006). [CrossRef]
  20. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, and F. Yoshino, “Fusion welding of glass using femtosecond laser pulses with high-repetition rates,” J. Laser Micro. Nanoeng. 2, 57–63 (2007). [CrossRef]
  21. Y. Ozeki, T. Inoue, T. Tamaki, H. Yamaguchi, S. Onda, W. Watanabe, T. Sano, S. Nishiuchi, A. Hirose, and K. Itoh, “Direct welding between copper and glass substrates with femtosecond laser pulses,” Appl. Phys. Express 1, 082601 (2008). [CrossRef]
  22. T. Sano, S. Iwasaki, Y. Ozeki, K. Itoh, and A. Hirose, “Femtosecond laser direct joining of copper with polyethylene terephthalate,” presented at Materials Science & Technology, Houston Texas, 17–21 October 2010.
  23. D. Lee, “Feasibility study on laser microwelding and laser shock peening using femtosecond laser pulses,” Ph.D. thesis (University of Michigan, 2008).
  24. B. Salle, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, and A. Semerok, “Femtosecond and picoseconds laser microablation: ablation efficiency and laser microplasma expansion,” Appl. Phys. A 69, S381–S383 (1999). [CrossRef]
  25. D. Linde, K. Sokolowski-Tinten, and J. Bialkowski, “Laser–solid interaction in the femtosecond time regime,” Appl. Surf. Sci. 109/110, 1–10 (1997). [CrossRef]
  26. S. M. Eaton, H. Zhang, and P. R. Herman, “Heat accumulation effects in femtosecond laser written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005). [CrossRef]
  27. H. M. Milchberg, T. R. Clark, C. G. Durfee, T. M. Antonsen, and P. Mora, “Development and applications of a plasma waveguide for intense laser pulses,” Phys. Plasma 3, 2149–2155 (1996). [CrossRef]
  28. C. Guo, M. Li, J. P. Nibarger, and G. N. Gibson, “Single and double ionization of diatomic molecules in strong laser fields,” Phys. Rev. A 58, R4271–R4274 (1998). [CrossRef]
  29. A. Y. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser metal interactions at high intensities,” Opt. Express 14, 13113–13119 (2006). [CrossRef]
  30. A. Y. Vorobyev and C. Guo, “Enhanced absorptance of gold following multipulse femtosecond laser ablation,” Phys. Rev. B 72, 195422 (2005). [CrossRef]
  31. S. Nisaratanaporn and E. Nisaratanaporn, “The anti-tarnishing, microstructure analysis and mechanical properties of sterling silver with silicon addition,” J. Metals Mater. Miner. 12, 13–18 (2003). [CrossRef]
  32. A. Y. Vorobyev and C. Guo, “Direct femtosecond laser surface nano/microstructuring and its applications,” Laser Photon. Rev., 1–23 (2012). [CrossRef]
  33. A. Borowiec and H. K. Haugen, “Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses,” Appl. Phys. Lett. 82, 4462–4464 (2003). [CrossRef]
  34. A. Y. Vorobyev and C. Guo, “Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals,” J. Appl. Phys. 103, 043513 (2008). [CrossRef]
  35. J. Bonsea, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012). [CrossRef]
  36. Y. L. Vladimirsky, A. Bourdillon, O. Vladimirsky, W. L. Jiang, and Q. Leonard, “Demagnification in proximity x-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction,” J. Phys. D 32, L114–L118 (1999). [CrossRef]
  37. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14, 1029–1031 (1965). [CrossRef]
  38. N. B. Grosse, J. Heckmann, and U. Woggon, “Nonlinear plasmon-photon interaction resolved by k-space spectroscopy,” Phys. Rev. Lett. 108, 103802 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited