OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1218–1225

Ultracompact ring resonator microwave photonic filters based on photonic crystal waveguides

Guansheng Shen, Huiping Tian, and Yuefeng Ji  »View Author Affiliations

Applied Optics, Vol. 52, Issue 6, pp. 1218-1225 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1004 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design two microwave photonic filters (notch filter and bandpass filter) based on silicon on insulator (SOI) photonic crystal waveguides for a 60 GHz single-sideband signal radio-over-fiber (ROF) system. By perturbing the radii of the first two rows of holes adjacent to the photonic crystal waveguide, we obtained a broad negligible dispersion bandwidth and a corresponding constant low group velocity. With the slow light effect, the delay line of filters can be significantly reduced while providing the same delay time as fiber based delay lines. The simulation results show that the delay-line length of the notch filter is only about 25.9 μm, and it has a free spectral range of 130 GHz, a baseband width (BW) of 4.12 GHz, and a notch depth of 22 dB. The length of the bandpass filter is 62.4 μm, with a 19.6 dB extinction ratio and a 4.02 GHz BW, and the signal-to-noise ratio requirement of received data can be reduced by 9 dB for the 107 bit-error ratio. Demonstrated microwave photonic crystal filters could be used in a future high-frequency millimeter ROF system.

© 2013 Optical Society of America

OCIS Codes
(120.2440) Instrumentation, measurement, and metrology : Filters
(130.3120) Integrated optics : Integrated optics devices
(230.1150) Optical devices : All-optical devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

Original Manuscript: September 17, 2012
Revised Manuscript: November 26, 2012
Manuscript Accepted: December 22, 2012
Published: February 13, 2013

Guansheng Shen, Huiping Tian, and Yuefeng Ji, "Ultracompact ring resonator microwave photonic filters based on photonic crystal waveguides," Appl. Opt. 52, 1218-1225 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulated wired/wireless access using reflective semiconductor optical amplifier with wireless signal broadcast,” IEEE Photon. Technol. Lett. 21, 1459–1461 (2009). [CrossRef]
  2. V. Sharma, A. Singh, and A. K. Sharma, “Challenges to radio over fiber (RoF) technology and its mitigation schemes–a review,” Optik 123, 338–342 (2012). [CrossRef]
  3. C. W. Chow, C. H. Yeh, M. G. Stanley, Lo. C. Li, and H. K. Tsang, “Long-reach radio-over-fiber signal distribution using single-sideband signal generated by a silicon modulator,” Opt. Express 19, 11312–11317 (2011). [CrossRef]
  4. J. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, and K. Kitayama, “Reconfigurable 2.5  Gb/s baseband and 60 GHz (155  Mb/s) millimeter-waveband radio-over-fiber access network,” J. Lightwave Technol. 26, 2506–2512 (2008). [CrossRef]
  5. S. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, channel inversion, and threshold scheduling on ad hoc networks,” IEEE Trans. Inf. Theory 53, 4127–4149(2007). [CrossRef]
  6. C. Lin, C. Wei, and M. Chao, “Phase noise suppression of optical OFDM signals in 60 GHz RoF transmission system,” Opt. Express 19, 10423–10428 (2011). [CrossRef]
  7. K. Zhu, H. Ou, Y. Hu, and H. Fu, “Tunable single-bandpass microwave photonic filters with high Q factor or flat-top shape based on cascaded optical structures,” in Proceedings of Optical Fiber Communication & Optoelectronic Exposition & Conference (IEEE, 2008), pp. 1–3.
  8. G. Ning, S. Aditya, P. Shum, L. Cheng, and H. Dong, “All optical microwave photonic filters with a round-trip configuration,” Appl. Phys. B 90, 137–140 (2008). [CrossRef]
  9. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27, 314–335 (2009). [CrossRef]
  10. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol. 24, 201–229 (2006). [CrossRef]
  11. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005). [CrossRef]
  12. M. Burla, D. Marpaung, L. Zhuang, C. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express 19, 21475–21484 (2011). [CrossRef]
  13. W. Xue, S. Sales, J. Mørk, and J. Capmany, “Widely tunable microwave photonic notch filter based on slow and fast light effects,” IEEE Photon. Technol. Lett. 21, 167–169 (2009). [CrossRef]
  14. X. Wang, H. Tian, and Y. Ji, “Photonic crystal slow light Mach–Zehnder interferometer modulator for optical interconnects,” J. Opt. 12, 065501 (2010). [CrossRef]
  15. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  16. A. Falco, L. O’Faolain, and T. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett. 94, 063503 (2009). [CrossRef]
  17. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y. Roh, and M. Notomi, “Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings,” Opt. Express 18, 15859–15869 (2010). [CrossRef]
  18. T. Tanabe, K. Nishiguchi, E. Kuramochi, and M. Notomi, “Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity,” Opt. Express 17, 22505–22513 (2009). [CrossRef]
  19. S. Matsuo, A. Shinya, C. Chen, K. Nozaki, T. Sato, Y. Kawaguchi, H. Taniyama, and M. Notomi, “20  Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption,” Opt. Express 19, 2242–2250 (2011). [CrossRef]
  20. W. Zheng, M. Xing, G. Ren, and S. G. Johnson, “Integration of a photonic crystal polarization beam splitter and waveguide bend,” Opt. Express 17, 8657–8668 (2009). [CrossRef]
  21. Z. Wang, K. Chiang, and Q. Liu, “Microwave photonic filter based on circulating a cladding mode in a fiber ring resonator,” Opt. Lett. 35, 769–771 (2010). [CrossRef]
  22. M. S. Rasras, K. Tu, and D. M. Gill, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol. 27, 2105–2110 (2009). [CrossRef]
  23. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7, 288–290 (1982). [CrossRef]
  24. D. Beggs, T. White, L. O’Faolain, and T. Krauss, “Ultracompact and low-power optical switch based on silicon photonic crystals,” Opt. Lett. 33, 147–149 (2008). [CrossRef]
  25. D. Yang, H. Tian, and Y. Ji, “Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays,” Opt. Express 19, 20023–20034 (2011). [CrossRef]
  26. D. Yang, H. Tian, and Y. Ji, “The study of electro-optical sensor based on slotted photonic crystal waveguide,” Opt. Commun. 284, 4986–4990 (2011). [CrossRef]
  27. X. Zhang, H. Tian, and Y. Ji, “Group index and dispersion properties of photonic crystal waveguides with circular and square air-holes,” Opt. Commun. 283, 1768–1772 (2010). [CrossRef]
  28. N. Matsuda, T. Kato, K. Harada, H. Takesue, E. Kuramochi, H. Taniyama, and M. Notomi, “Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide,” Opt. Express 19, 19861–19874 (2011). [CrossRef]
  29. A. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  30. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001). [CrossRef]
  31. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005). [CrossRef]
  32. L. O’Faolain, S. Schulz, D. Beggs, T. White, M. Spasenović, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. Hugonin, P. Lalanne, and T. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010). [CrossRef]
  33. L. Frandsen, J. Fage-Pedersen, A. Lavrinenko, and P. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006). [CrossRef]
  34. S. A. Schulz, L. O’Faolain, D. M. Beggs, T. P. White, A. Melloni, and T. F. Krauss, “Dispersion engineered slow light in photonic crystals: a comparison,” J. Opt. 12, 104004 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited