OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1226–1229

Mode-locked thulium–bismuth codoped fiber laser using graphene saturable absorber in ring cavity

D. I. M. Zen, N. Saidin, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. A. Ismail, K. Dimyati, A. Halder, M. C. Paul, S. Das, M. Pal, and S. K. Bhadra  »View Author Affiliations


Applied Optics, Vol. 52, Issue 6, pp. 1226-1229 (2013)
http://dx.doi.org/10.1364/AO.52.001226


View Full Text Article

Enhanced HTML    Acrobat PDF (544 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate mode locking of a thulium–bismuth codoped fiber laser (TBFL) operating at 1901.6 nm, using a graphene-based saturable absorber (SA). In this work, a single layer graphene is mechanically exfoliated using the scotch tape method and directly transferred onto the surface of a fiber pigtail to fabricate the SA. The obtained Raman spectrum characteristic indicates that the graphene on the core surface has a single layer. At 1552 nm pump power of 869 mW, the mode-locked TBFL self starts to generate an optical pulse train with a repetition rate of 16.7 MHz and pulse width of 0.37 ps. This is a simple, low-cost, stable, and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics.

© 2013 Optical Society of America

OCIS Codes
(140.3538) Lasers and laser optics : Lasers, pulsed
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 19, 2012
Revised Manuscript: January 18, 2013
Manuscript Accepted: January 18, 2013
Published: February 15, 2013

Citation
D. I. M. Zen, N. Saidin, S. S. A. Damanhuri, S. W. Harun, H. Ahmad, M. A. Ismail, K. Dimyati, A. Halder, M. C. Paul, S. Das, M. Pal, and S. K. Bhadra, "Mode-locked thulium–bismuth codoped fiber laser using graphene saturable absorber in ring cavity," Appl. Opt. 52, 1226-1229 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-6-1226


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3, 738–742 (2008). [CrossRef]
  2. M. A. Ismail, S. J. Tan, N. S. Shahabuddin, S. W. Harun, H. Arof, and H. Ahmad, “Performance comparison of mode-locked erbium-doped fiber laser with nonlinear polarization rotation and saturable absorber approaches,” Chin. Phys. Lett. 29, 054216 (2012). [CrossRef]
  3. S. W. Harun, R. Akbari, H. Arof, and H. Ahmad, “Mode-locked bismuth-based erbium-doped fiber laser with stable and clean femtosecond pulses output,” Laser Phys. Lett. 8, 449–452 (2011). [CrossRef]
  4. F. Träger, Springer Handbook of Lasers and Optics (Springer-Verlag, 2007).
  5. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000). [CrossRef]
  6. A. Martinez, K. Kazuyuki, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locking lasing,” Opt. Express 18, 23054–23061 (2010). [CrossRef]
  7. Z. Sun, T. Hasan, F. Bonaccorso, F. Torrisi, D. M. Basko, D. Popa, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010). [CrossRef]
  8. L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67, 19–21 (1995). [CrossRef]
  9. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, “190 fs passively mode-locked thulium fiber laser with a low threshold,” Opt. Lett. 21, 881–883 (1996). [CrossRef]
  10. M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ,” Opt. Lett. 33, 690–692 (2008). [CrossRef]
  11. J. Liu, S. Wu, J. Xu, Q. Wang, Q. Yang, and Pu Wang, “Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber,” in CLEO/Europe and EQEC 2011 Conference Digest, OSA Technical Digest (CD) (Optical Society of America, 2012), paper JW2A.76.
  12. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20, 25077–25084 (2012). [CrossRef]
  13. M. Jung, J. Koo, P. Debnath, Y. W. Song, and J. H. Lee, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express 5, 112702 (2012). [CrossRef]
  14. A. Halder, M. C. Paul, S. W. Harun, S. M. M. Ali, N. Saidin, S. S. A. Damanhuri, H. Ahmad, S. Das, M. Pal, and S. K. Bhadra, “1880 nm broadband ASE generation with bismuth–thulium codoped fiber,” IEEE Photon. J. 4, 2176–2181 (2012). [CrossRef]
  15. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006). [CrossRef]
  16. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, “Spatially resolved Raman spectroscopy of single-and few-layer graphene,” Nano Lett. 7, 238–242 (2007). [CrossRef]
  17. S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Kang, J. Park, and R. S. Ruoff, “Oxidation resistance of graphene-coated Cu and Cu/Ni alloy,” ACS Nano 5, 1321–1327 (2011). [CrossRef]
  18. T. Winzer, A. Knorr, M. Mittendorff, S. Winnert, M.-B. Lien, D. Sun, T. B. Norris, M. Helm, and E. Malic, “Absorption saturation in optically excited graphene,” Appl. Phys. Lett. 101, 221115 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited