OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1230–1239

Comprehensive analysis of escape-cone losses from luminescent waveguides

Stephen McDowall, Tristan Butler, Edward Bain, Kelsey Scharnhorst, and David Patrick  »View Author Affiliations


Applied Optics, Vol. 52, Issue 6, pp. 1230-1239 (2013)
http://dx.doi.org/10.1364/AO.52.001230


View Full Text Article

Enhanced HTML    Acrobat PDF (642 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Luminescent waveguides (LWs) occur in a wide range of applications, from solar concentrators to doped fiber amplifiers. Here we report a comprehensive analysis of escape-cone losses in LWs, which are losses associated with internal rays making an angle less than the critical angle with a waveguide surface. For applications such as luminescent solar concentrators, escape-cone losses often dominate all others. A statistical treatment of escape-cone losses is given accounting for photoselection, photon polarization, and the Fresnel relations, and the model is used to analyze light absorption and propagation in waveguides with isotropic and orientationally aligned luminophores. The results are then compared to experimental measurements performed on a fluorescent dye-doped poly(methyl methacrylate) waveguide.

© 2013 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(080.2720) Geometric optics : Mathematical methods (general)
(230.7370) Optical devices : Waveguides
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media

ToC Category:
Optical Devices

History
Original Manuscript: October 24, 2012
Manuscript Accepted: December 21, 2012
Published: February 15, 2013

Citation
Stephen McDowall, Tristan Butler, Edward Bain, Kelsey Scharnhorst, and David Patrick, "Comprehensive analysis of escape-cone losses from luminescent waveguides," Appl. Opt. 52, 1230-1239 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-6-1230


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. J. Keil, “Radiance amplification by a fluorescence radiation converter,” Appl. Phys. 40, 3544–3547 (1969). [CrossRef]
  2. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299–2300 (1976). [CrossRef]
  3. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090–3110 (1979). [CrossRef]
  4. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733–3754 (1981). [CrossRef]
  5. M. I. Barnik, V. G. Vasil’chenko, S. V. Golovkin, A. M. Medvedkov, A. S. Solov’ev, and S. G. Yudin, “Scintillation properties of materials based on liquid crystals in static and dynamic states,” Instrum. Exp. Tech. 43, 602–611 (2000). [CrossRef]
  6. G. Baur, A. Stieb, and G. Meier, “Polarized fluorescence of dyes oriented in room temperature nematic liquid crystals,” Mol. Cryst. Liq. Cryst. 22, 261–269 (1973). [CrossRef]
  7. Z. Chen and T. M. Swager, “Synthesis and characterization of fluorescent acenequinones as dyes for guest–host liquid crystal displays,” Org. Lett. 9, 997–1000 (2007). [CrossRef]
  8. X. Zhang, R. Yamaguchi, K. Moriyama, M. Kadowaki, T. Kobayashi, T. Ishi-i, T. Thiemann, and S. Mataka, “Highly dichroic benzo-2,1,3-thiadiazole dyes containing five linearly π-conjugated aromatic residues, with fluorescent emission ranging from green to red, in a liquid crystal guest-host system,” J. Mater. Chem. 16, 736–740 (2006). [CrossRef]
  9. C. J. Koester and E. Snitzer, “Amplification in a fiber laser,” Appl. Opt. 3, 1182–1186 (1964). [CrossRef]
  10. P. P. C. Verbunt and M. G. Debije, “Progress in luminescent solar concentrator research: solar energy for the built environment,” in World Renewable Energy Congress (Linköping University Electronic Press, 2011), p. 2751–2758.
  11. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. De Mello Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators—a review of recent results,” Opt. Express 16, 21773–21792 (2008). [CrossRef]
  12. V. V. Popov and V. N. Yakimenko, “State of the art of prospects for investigations of luminescent solar concentrators,” J. Appl. Spectrosc. 62, 573–577 (1995). [CrossRef]
  13. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: solar energy for the built environment,” Adv. Energy Mater. 2, 12–35 (2012). [CrossRef]
  14. W. A. Shurcliff and R. C. Jones, “The trapping of fluorescent light produced within objects of high geometrical symmetry,” J. Opt. Soc. Am. 39, 912–916 (1949). [CrossRef]
  15. P. P. C. Verbunt, C. W. M. Bastiaansen, D. J. Broer, and M. G. Debije, “The effect of dyes aligned by liquid crystals on luminescent solar concentrator performance,” presented at the 24th European Photovoltaic Solar Energy Conference, Hamburg, 21–25 September 2009.
  16. C. L. Mulder, P. D. Reusswig, A. M. Velázquez, H. Kim, C. Rotschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: I. Vertical alignment for improved waveguide coupling,” Opt. Express 18, A79–A90 (2010). [CrossRef]
  17. C. L. Mulder, P. D. Reusswig, A. P. Beyler, H. Kim, C. Rotschild, and M. A. Baldo, “Dye alignment in luminescent solar concentrators: II. Horizontal alignment for energy harvesting in linear polarizers,” Opt. Express 18, A91–A99(2010). [CrossRef]
  18. M. G. Debije, “Solar energy collectors with tunable transmission,” Adv. Funct. Mater. 20, 1498–1502 (2010). [CrossRef]
  19. R. W. MacQueen, Y. Y. Cheng, R. G. C. R. Clady, and T. W. Schmidt, “Towards an aligned luminophore solar concentrator,” Opt. Express 18, A161–A166 (2010). [CrossRef]
  20. S. McDowall, B. L. Johnson, and D. L. Patrick, “Simulations of luminescent solar concentrators: effects of polarization and fluorophore alignment,” J. Appl. Phys. 108, 053508 (2010). [CrossRef]
  21. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010). [CrossRef]
  22. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  23. R. H. Lehmberg, “Radiation from an N-atom system. I. General formalism,” Phys. Rev. A 2, 883–888 (1970). [CrossRef]
  24. L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt. 48, 212–220 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited