OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1284–1292

Polarization calibration with large apertures in full field of view for a full Stokes imaging polarimeter based on liquid-crystal variable retarders

Ying Zhang, Huijie Zhao, and Na Li  »View Author Affiliations


Applied Optics, Vol. 52, Issue 6, pp. 1284-1292 (2013)
http://dx.doi.org/10.1364/AO.52.001284


View Full Text Article

Enhanced HTML    Acrobat PDF (1745 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Currently, polarization calibration for full Stokes imaging polarimeters is limited by the apertures of the retarders. In this paper, an improved polarization calibration with large apertures in full field of view for full Stokes imaging polarimeters based on liquid-crystal variable retarders is proposed and investigated theoretically and experimentally. The experimental precision of polarization calibration is 1.7% for linear polarization states and 8.8% for circular ones for an imaging polarimeter with a 100 mm aperture and 10° field of view. The feasibility for full Stokes polarization image is also confirmed in experiment for identifying objects due to degree of polarization and degree of circular polarization images.

© 2013 Optical Society of America

OCIS Codes
(000.3110) General : Instruments, apparatus, and components common to the sciences
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Imaging Systems

History
Original Manuscript: October 31, 2012
Revised Manuscript: January 10, 2013
Manuscript Accepted: January 12, 2013
Published: February 18, 2013

Citation
Ying Zhang, Huijie Zhao, and Na Li, "Polarization calibration with large apertures in full field of view for a full Stokes imaging polarimeter based on liquid-crystal variable retarders," Appl. Opt. 52, 1284-1292 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-6-1284


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef]
  2. A. G. Andreou and Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002). [CrossRef]
  3. M. D. Perrin, J. R. Graham, P. Kalas, J. P. Lloyd, C. E. Max, D. Gavel, D. M. Pennington, and E. L. Gates, “Laser guide star adaptive optics imaging polarimetry of Herbig Ae/Be stars,” Science 303, 1345–1348 (2004). [CrossRef]
  4. A. Barta, G. Horváth, B. Bernáth, and V. B. Meyer-Rochow, “Imaging polarimetry of the rainbow,” Appl. Opt. 42, 399–405 (2003). [CrossRef]
  5. G. Horváth, R. Hegedüs, A. Barta, A. Farkas, and S. Åkesson, “Imaging polarimetry of the fogbow: polarization characteristics of white rainbows measured in the high Arctic,” Appl. Opt. 50, F64–F71 (2011). [CrossRef]
  6. G. Horváth, A. Barta, J. Gál, B. Suhai, and O. Haiman, “Ground-based full-sky imaging polarimetry of rapidly changing skies and its use for polarimetric cloud detection,” Appl. Opt. 41, 543–559 (2002). [CrossRef]
  7. R. Hegedüs, A. Barta, B. Bernáth, V. B. Meyer-Rochow, and G. Horváth, “Imaging polarimetry of forest canopies: how the azimuth direction of the sun, occluded by vegetation, can be assessed from the polarization pattern of the sunlit foliage,” Appl. Opt. 46, 6019–6032 (2007). [CrossRef]
  8. Y. Hanaoka, “Imaging polarimetry of Hα kernels of solar flares with a ferroelectric liquid crystal polarimeter,” Adv. Space Res. 35, 1851–1854 (2005). [CrossRef]
  9. C. Beck, L. R. Bellot Rubio, T. J. Kentischer, A. Tritschler, and J. C. del Toro Iniesta, “Two-dimensional solar spectropolarimetry with the KIS/IAA Visible Imaging Polarimeter,” Astron. Astrophys. 520, A115 (2010). [CrossRef]
  10. H. Luo, K. Oka, E. DeHoog, M. Kudenov, J. Schiewgerling, and E. L. Dereniak, “Compact and miniature snapshot imaging polarimeter,” Appl. Opt. 47, 4413–4417 (2008). [CrossRef]
  11. M. Miura, A. E. Elsner, and M. C. Cheney, “Imaging polarimetry and retinal blood vessel quantification at the epiretinal membrane,” J. Opt. Soc. Am. A 24, 1431–1437 (2007). [CrossRef]
  12. M. W. Kudenov, J. L. Pezzaniti, and G. R. Gerhart, “Micro bolometer-infrared imaging Stokes polarimeter,” Opt. Eng. 48, 063201 (2009). [CrossRef]
  13. A. E. Elsner, A. Weber, and M. C. Cheney, “Imaging polarimetry in patients with neovascularage-related macular degeneration,” J. Opt. Soc. Am. A 24, 1468–1480 (2007). [CrossRef]
  14. L. Jin, T. Hamada, Y. Otani, and N. Umeda, “Measurement of characteristics of magnetic fluid by the Mueller matrix imaging polarimeter,” Opt. Eng. 43, 181–185 (2004). [CrossRef]
  15. R. J. Wijngaarden, K. Heeck, M. Welling, R. Limburg, M. Pannetier, K. van Zetten, V. L. G. Roorda, and A. R. Voorwinden, “Fast imaging polarimeter for magneto-optical investigations,” Rev. Sci. Instrum. 72, 2661–2664 (2001). [CrossRef]
  16. M. Mujat, E. Baleine, and A. Dogariu, “Interferometric imaging polarimeter,” J. Opt. Soc. Am. A 21, 2244–2249 (2004). [CrossRef]
  17. C. Zhang and H. Wu, “Fourier transform hyperspectral imaging polarimeter for remote sensing,” Opt. Eng. 50, 066201 (2011). [CrossRef]
  18. J. Craven-Jones, M. W. Kudenov, M. G. Stapelbroek, and E. L. Dereniak, “Infrared hyperspectral imaging polarimeter using birefringent prisms,” Appl. Opt. 50, 1170–1185 (2011). [CrossRef]
  19. K. Oka, “Compact complete imaging polarimeter using birefringent wedge prisms,” Opt. Express 11, 1510–1519 (2003). [CrossRef]
  20. M. W. Kudenov, M. J. Escuti, E. L. Dereniak, and K. Oka, “White-light channeled imaging polarimeter using broadband polarization gratings,” Appl. Opt. 50, 2283–2293 (2011). [CrossRef]
  21. M. W. Kudenov, M. J. Escuti, N. Hagen, E. L. Dereniak, and K. Oka, “Snapshot imaging Mueller matrix polarimeter using polarization gratings,” Opt. Lett. 37, 1367–1369 (2012). [CrossRef]
  22. Z. Wu, P. E. Powers, A. M. Sarangan, and Q. Zhan, “Optical characterization of wiregrid micropolarizers designed for infrared imaging polarimetry,” Opt. Lett. 33, 1653–1655 (2008). [CrossRef]
  23. U. Spillmann, H. Bräuning, S. Hess, H. Beyer, Th. Stöhlker, J.-Cl. Dousse, D. Protic, and T. Krings, “Performance of a Ge-microstrip imaging detector and polarimeter,” Rev. Sci. Instrum. 79, 083101 (2008). [CrossRef]
  24. J. Guo and D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39, 1486–1492 (2000). [CrossRef]
  25. X. Zhao, F. Boussaid, A. Bermak, and V. G. Chigrinov, “High-resolution thin “guest-host” micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19, 5565–5573 (2011). [CrossRef]
  26. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999). [CrossRef]
  27. Y. Zhang, H. J. Zhao, X. Cheng, and S. J. Xiong, “Design of full-polarized and multi-spectral imaging system based on LCVR,” Spectrosc. Spectral Anal. 31, 1375–1378 (2011) (in Chinese).
  28. X. Zhao, A. Bermak, F. Boussaid, and V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging invisible spectrum,” Opt. Express 18, 17776–17787 (2010). [CrossRef]
  29. N. J. Pust and J. A. Shaw, “Dual-field imaging polarimeter using liquid crystal variable retarders,” Appl. Opt. 45, 5470–5478 (2006). [CrossRef]
  30. M. P. Fetrow and J. K. Boger, “Instrument simulation for estimating uncertainties in imaging polarimeters,” Opt. Eng. 45, 063603 (2006). [CrossRef]
  31. J. S. Tyo and H. Wei, “Optimizing imaging polarimeters constructed with imperfect optics,” Appl. Opt. 45, 5497–5503 (2006). [CrossRef]
  32. D. Kim, “Performance uniformity analysis of a wire-grid polarizer in imaging polarimetry,” Appl. Opt. 44, 5398–5402 (2005). [CrossRef]
  33. J. E. Ahmad and Y. Takakura, “Error analysis for rotating active Stokes–Mueller imaging polarimeters,” Opt. Lett. 31, 2858–2860 (2006). [CrossRef]
  34. J. S. Tyo, “Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters,” Opt. Lett. 25, 1198–1200 (2000). [CrossRef]
  35. I. Berezhnyy and A. Dogariu, “Time-resolved Mueller matrix imaging polarimetry,” Opt. Express 12, 4635–4649 (2004). [CrossRef]
  36. S. Drobczynski, J. M. Bueno, P. Artal, and H. Kasprzak, “Transmission imaging polarimetry for a linear birefringent medium using a carrier fringe method,” Appl. Opt. 45, 5489–5496 (2006). [CrossRef]
  37. D. Lara and C. Dainty, “Double-pass axially resolved confocal Mueller matrix imaging polarimetry,” Opt. Lett. 30, 2879–2881 (2005). [CrossRef]
  38. S. Yu. Berezhna, I. V. Berezhnyy, and M. Takashi, “Dynamic photometric imaging polarizer-sample analyzer polarimeter: instrument for mapping birefringence and optical rotation,” J. Opt. Soc. Am. A 18, 666–672 (2001). [CrossRef]
  39. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41, 619–630 (2002).
  40. H. Canovas, M. Rodenhuis, S. V. Jeffers, M. Min, and C. U. Keller, “Data-reduction techniques for high-contrast imaging polarimetry applications to ExPo,” Astron. Astrophys. 531, A102 (2011). [CrossRef]
  41. N. Gupta and D. R. Suhre, “Acousto-optic tunable filter imaging spectrometer with full Stokes polarimetric capability,” Appl. Opt. 46, 2632–2637 (2007). [CrossRef]
  42. M. Vedel, S. Breugnot, and N. Lechocinski, “Full Stokes polarization imaging camera,” Proc. SPIE 8160, 81600X (2011).
  43. J. L. Pezzaniti, D. Chenault, M. Roche, J. Reinhardt, and J. P. Pezzaniti, “Four camera complete Stokes imaging polarimeter,” Proc. SPIE 6972, 69720J (2008). [CrossRef]
  44. M. J. Duggin and R. S. Loe, “Calibration and exploitation of a narrow-band imaging polarimeter,” Opt. Eng. 41, 1039–1047 (2002). [CrossRef]
  45. W. A. Woźniak, P. Kurzynowski, and S. Drobczyński, “Adjustment method of an imaging Stokes polarimeter based on liquid crystal variable retarders,” Appl. Opt. 50, 203–212 (2011). [CrossRef]
  46. M. J. Duggin and R. S. Loe, “Calibration and exploitation of a narrow-band, imaging polarimeter,” Opt. Eng. 41, 1039–1047 (2002). [CrossRef]
  47. R. S. Schnerr, J. de la Cruz Rodríguez, and M. van Noort, “Stokes imaging polarimetry using image restoration: a calibration strategy for Fabry–Perot based instruments,” Astron. Astrophys. 534, A45 (2011). [CrossRef]
  48. D. L. Bowers, J. K. Boger, L. D. Wellems, S. E. Ortega, M. P. Fetrow, J. E. Hubbs, W. T. Black, B. M. Ratliff, and J. S. Tyo, “Unpolarized calibration and nonuniformity correction for long-wave infrared microgrid imaging polarimeters,” Opt. Eng. 47, 046403 (2008). [CrossRef]
  49. M. W. Kudenov, L. Pezzaniti, E. L. Dereniak, and G. R. Gerhart, “Prismatic imaging polarimeter calibration for the infrared spectral region,” Opt. Express 16, 13720–13737 (2008). [CrossRef]
  50. J. S. Baba, J. R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7, 341–349 (2002). [CrossRef]
  51. B. Boulbry, J. C. Ramella-Roman, and T. A. Germer, “Improved method for calibrating a Stokes polarimeter,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef]
  52. G. Yun, K. Crabtree, and R. A. Chipman, “Skew aberration: a form of polarization aberration,” Opt. Lett. 36, 4062–4064 (2011). [CrossRef]
  53. Meadowlark Optics, Inc., “Meadowlark Optics catalog,” pp. 48–50 (2012), http://www.meadowlark.com/store/catalog/Catalog_Oct_18_2012.pdf .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited