OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 6 — Feb. 20, 2013
  • pp: 1339–1350

Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites

Sergey Oshchepkov, Andrey Bril, Tatsuya Yokota, Yukio Yoshida, Thomas Blumenstock, Nicholas M. Deutscher, Susanne Dohe, Ronald Macatangay, Isamu Morino, Justus Notholt, Markus Rettinger, Christof Petri, Matthias Schneider, Ralf Sussman, Osamu Uchino, Voltaire Velazco, Debra Wunch, and Dmitry Belikov  »View Author Affiliations


Applied Optics, Vol. 52, Issue 6, pp. 1339-1350 (2013)
http://dx.doi.org/10.1364/AO.52.001339


View Full Text Article

Enhanced HTML    Acrobat PDF (2837 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents an improved photon path length probability density function method that permits simultaneous retrievals of column-average greenhouse gas mole fractions and light path modifications through the atmosphere when processing high-resolution radiance spectra acquired from space. We primarily describe the methodology and retrieval setup and then apply them to the processing of spectra measured by the Greenhouse gases Observing SATellite (GOSAT). We have demonstrated substantial improvements of the data processing with simultaneous carbon dioxide and light path retrievals and reasonable agreement of the satellite-based retrievals against ground-based Fourier transform spectrometer measurements provided by the Total Carbon Column Observing Network (TCCON).

© 2013 Optical Society of America

OCIS Codes
(290.1090) Scattering : Aerosol and cloud effects
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(280.4991) Remote sensing and sensors : Passive remote sensing
(010.5620) Atmospheric and oceanic optics : Radiative transfer

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: October 18, 2012
Revised Manuscript: December 23, 2012
Manuscript Accepted: December 25, 2012
Published: February 19, 2013

Citation
Sergey Oshchepkov, Andrey Bril, Tatsuya Yokota, Yukio Yoshida, Thomas Blumenstock, Nicholas M. Deutscher, Susanne Dohe, Ronald Macatangay, Isamu Morino, Justus Notholt, Markus Rettinger, Christof Petri, Matthias Schneider, Ralf Sussman, Osamu Uchino, Voltaire Velazco, Debra Wunch, and Dmitry Belikov, "Simultaneous retrieval of atmospheric CO2 and light path modification from space-based spectroscopic observations of greenhouse gases: methodology and application to GOSAT measurements over TCCON sites," Appl. Opt. 52, 1339-1350 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-6-1339


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Hamazaki, Y. Kaneko, A. Kuze, and K. Kondo, “Fourier transform spectrometer for Greenhouse Gases Observing Satellite (GOSAT),” Proc. SPIE 5659, 73–80 (2005). [CrossRef]
  2. T. Yokota, Y. Yoshida, N. Eguchi, Y. Ota, T. Tanaka, H. Watanabe, and S. Maksyutov, “Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results,” Sci. Online Lett. Atmos. 5, 160–163 (2009). [CrossRef]
  3. A. Kuze, H. Suto, M. Nakajima, and T. Hamazaki, “Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring,” Appl. Opt. 48, 6716–6733 (2009). [CrossRef]
  4. P. J. Rayner and D. M. O’Brien, “The utility of remotely sensed CO2 concentration data in surface source inversions,” Geophys. Res. Lett. 28, 175–178 (2001). [CrossRef]
  5. C. E. Miller, D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Y. Fung, D. O’Brien, R. J. Salawitch, S. P. Sander, B. Sen, P. Tans, G. C. Toon, P. O. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law, “Precision requirements for space-based XCO2 data,” J. Geophys. Res. 112, D10314 (2007). [CrossRef]
  6. F. Chevallier, S. Maksyutov, P. Bousquet, F.-M. Bréon, R. Saito, Y. Yoshida, and T. Yokota, “On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations,” Geophys. Res. Lett. 36, L19807 (2009). [CrossRef]
  7. N. Kadygrov, S. Maksyutov, N. Eguchi, T. Aoki, T. Nakazawa, T. Yokota, and G. Inoue, “Role of simulated GOSAT total column CO2 observations in surface CO2 flux uncertainty reduction,” J. Geophys. Res. 114, D21208 (2009). [CrossRef]
  8. D. M. O’Brien and P. J. Rayner, “Global observations of the carbon budget, 2, CO2 column from differential absorption of reflected sunlight in the 1.61 μm band of CO2,” J. Geophys. Res. 107, 4354 (2002). [CrossRef]
  9. E. Dufour and F.-M. Bréon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error analysis,” Appl. Opt. 42, 3595–3609 (2003). [CrossRef]
  10. J. Mao and S. R. Kawa, “Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight,” Appl. Opt. 43, 914–927 (2004). [CrossRef]
  11. S. Houweling, W. Hartmann, I. Aben, H. Schrijver, J. Skidmore, G.-J. Roelofs, and F.-M. Breon, “Evidence of systematic errors in SCIAMACHY-observed CO2 due to aerosols,” Atmos. Chem. Phys. 5, 3003–3013 (2005). [CrossRef]
  12. I. Aben, O. Hasekamp, and W. Hartmann, “Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth’s atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 104, 450–459 (2007). [CrossRef]
  13. S. Oshchepkov, A. Bril, and T. Yokota, “PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space,” J. Geophys. Res. 113, D23210 (2008). [CrossRef]
  14. S. Oshchepkov, A. Bril, and T. Yokota, “An improved photon path length probability density function-based radiative transfer model for space-based observation of greenhouse gases,” J. Geophys. Res. 114, D19207 (2009). [CrossRef]
  15. M. Reuter, M. Buchwitz, O. Schneising, J. Heymann, H. Bovensmann, and J. P. Burrows, “A method for improved SCIAMACHY CO2 retrieval in the presence of optically thin clouds,” Atmos. Meas. Tech. 3, 209–232 (2010). [CrossRef]
  16. A. Bril, S. Oshchepkov, T. Yokota, and G. Inoue, “Parameterization of aerosol and cirrus cloud effects on reflected sunlight spectra measured from space: application of the equivalence theorem,” Appl. Opt. 46, 2460–2470 (2007). [CrossRef]
  17. B. J. Connor, H. Boesch, G. Toon, B. Sen, C. Miller, and D. Crisp, “Orbiting Carbon Observatory: inverse method and prospective error analysis,” J. Geophys. Res. 113, D05305 (2008). [CrossRef]
  18. S. Oshchepkov, A. Bril, T. Yokota, I. Morino, Y. Yoshida, T. Matsunaga, D. Belikov, D. Wunch, P. Wennberg, G. Toon, C. O’Dell, A. Butz, S. Guerlet, A. Cogan, H. Boesch, N. Eguchi, N. Deutscher, D. Griffith, R. Macatangay, J. Notholt, R. Sussmann, M. Rettinger, V. Sherlock, J. Robinson, E. Kyrö, P. Heikkinen, D. G. Feist, T. Nagahama, N. Kadygrov, S. Maksyutov, O. Uchino, and H. Watanabe, “Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 1: validation of PPDF-based CO2 retrievals from GOSAT,” J. Geophys. Res. 117, D12305 (2012). [CrossRef]
  19. A. Butz, O. P. Hasekamp, C. Frankenberg, and I. Aben, “Retrievals of atmospheric CO2 from simulated space-borne measurements of backscatter near-infrared sunlight: accounting for aerosol effects,” Appl. Opt. 48, 3322–3336 (2009). [CrossRef]
  20. C. W. O’Dell, B. Connor, H. Boesch, D. O’Brien, C. Frankenberg, R. Castano, M. Christi, D. Crisp, A. Eldering, B. Fisher, M. Gunson, J. McDuffie, C. E. Miller, V. Natraj, F. Oyafuso, I. Polonsky, M. Smyth, T. Taylor, G. C. Toon, P. O. Wennberg, and D. Wunch, “The ACOS CO2 retrieval algorithm—part 1: description and validation against synthetic observations,” Atmos. Meas. Tech. 5, 99–121 (2012). [CrossRef]
  21. Y. Yoshida, Y. Ota, N. Eguchi, N. Kikuchi, K. Nobuta, H. Tran, I. Morino, and T. Yokota, “Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse Gases Observing Satellite,” Atmos. Meas. Tech. 4, 717–734 (2011). [CrossRef]
  22. A. J. Cogan, H. Boesch, R. J. Parker, L. Feng, P. I. Palmer, J.-F. L. Blavier, N. M. Deutscher, R. Macatangay, J. Notholt, C. Roehl, T. Warneke, and D. Wunch, “Atmospheric carbon dioxide retrieved from the Greenhouse Gases Observing SATellite: comparison with ground-based TCCON observations and GEOS-Chem model calculations,” J. Geophys. Res.117, D21301 (2012). [CrossRef]
  23. S. Oshchepkov, A. Bril, T. Yokota, P. Wennberg, N. M. Deutscher, D. Wunch, G. C. Toon, Y. Yoshida, C. W. O’Dell, D. Crisp, C. E. Miller, C. Frankenberg, A. Butz, I. Aben, S. Guerlet, O. Hasekamp, H. Boesch, A. Cogan, R. Parker, D. Griffith, R. Macatangay, J. Notholt, R. Sussmann, M. Rettinger, V. Sherlock, J. Robinson, E. Kyrö, P. Heikkinen, D. G. Feist, I. Morino, N. Kadygrov, D. Belikov, S. Maksyutov, T. Matsunaga, O. Uchino, and H. Watanabe, “Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites,” J. Geophys. Res. (to be published).
  24. D. Wunch, G. C. Toon, J.-F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg, “The Total Carbon Column Observing Network,” Phil. Trans. R. Soc. A 369, 2087–2112 (2011). [CrossRef]
  25. R. Bennartz and R. Preusker, “Representation of the photon path-length distribution in a cloudy atmosphere using finite elements,” J. Quant. Spectrosc. Radiat. Transfer 98, 202–219 (2006). [CrossRef]
  26. M. Buchwitz, V. Rozanov, and J. P. Burrows, “A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances,” J. Geophys. Res. 105, 15231–15245 (2000). [CrossRef]
  27. C. Frankenberg, U. Platt, and T. Wagner, “Iterative maximum a posteriori (IMAP)-DOAS for retrieval of strongly absorbing trace gases: model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT,” Atmos. Chem. Phys. 5, 9–22 (2005). [CrossRef]
  28. S. Oshchepkov, A. Bril, S. Maksyutov, and T. Yokota, “Detection of optical path in spectroscopic space-based observations of greenhouse gases: application to GOSAT data processing,” J. Geophys. Res. 116, D14304 (2011). [CrossRef]
  29. C. Cox and W. Munk, “Statics of the sea surface derived from sun glitter,” J. Marine Res. 13, 198–227 (1954).
  30. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, 2000).
  31. A. Bril, S. Oshchepkov, and T. Yokota, “Application of a probability density function-based atmospheric light-scattering correction to carbon dioxide retrievals from GOSAT over-sea observations,” Remote Sens. Environ. 117, 301–306 (2012). [CrossRef]
  32. H. Ishida and T. Y. Nakajima, “Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager,” J. Geophys. Res. 114, D07206 (2009). [CrossRef]
  33. D. Wunch, G. C. Toon, P. O. Wennberg, S. C. Wofsy, B. Stephens, M. L. Fisher, O. Uchino, J. B. Abshire, P. F. Bernath, S. C. Biraud, J.-F. L. Blavier, C. D. Boone, K. P. Bowman, E. V. Browell, T. Campos, B. J. Connor, B. C. Daube, N. M. Deutscher, M. Diao, J. W. Elkins, C. Gerbig, E. Gottlieb, D. W. T. Griffith, D. F. Hurst, R. Jiménez, G. Keppel-Aleks, E. A. Kort, R. Macatangay, T. Machida, H. Matsueda, F. L. Moore, I. Morino, S. Park, J. Robinson, C. M. Roehl, Y. Sawa, V. Sherlock, C. Sweeney, T. Tanaka, and M. A. Zondlo, “Calibration of the Total Carbon Column Observing Network using aircraft profile data,” Atmos. Meas. Tech. 3, 1351–1362(2010). [CrossRef]
  34. N. M. Deutscher, D. W. T. Griffith, G. W. Bryant, P. O. Wennberg, G. C. Toon, R. A. Washenfelder, G. Keppel-Aleks, D. Wunch, Y. G. Yavin, N. T. Allen, J.-F. L. Blavier, R. Jiménez, B. C. Daube, A. V. Bright, D. M. Matross, S. C. Wofsy, and S. Park, “Total column CO2 measurements at Darwin, Australia—site description and calibration against in situ aircraft profiles,” Atmos. Meas. Tech. 3, 947–958 (2010). [CrossRef]
  35. J. Messerschmidt, J. R. Macatangay, J. Notholt, C. Petri, T. Warneke, and C. Weinzierl, “Side by side measurements of CO2 by ground-based Fourier transform spectrometry (FTS),” Tellus B 62, 749–758 (2010). [CrossRef]
  36. D. Belikov, S. Maksyutov, V. Sherlock, S. Aoki, N. M. Deutscher, S. Dohe, D. Griffith, E. Kyro, I. Morino, T. Nakazawa, N. Notholt, M. Rettinger, M. Schneider, R. Sussmann, G. C. Toon, P. O. Wennberg, and D. Wunch, “Simulations of column-average CO2 and CH4 using the NIES TM with a hybrid sigma-isentropic (σ−θ) vertical coordinate,” Atmos. Chem. Phys. Discuss. 12, 8053–8106 (2012). [CrossRef]
  37. T. Takemura, M. Egashira, K. Matsuzawa, H. Ichijo, R. O’ishi, and A. Abe-Ouchi, “A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum,” Atmos. Chem. Phys. 9, 3061–3073(2009). [CrossRef]
  38. D. York, N. Evensen, M. Martínez, and J. Delgado, “Unified equations for the slope, intercept, and standard errors of the best straight line,” Am. J. Phys. 72, 367–375(2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited