OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: 1377–1382

Design and fabrication of an achromatic infrared wave plate with Sb–Ge–Sn–S system chalcogenide glass

Itsunari Yamada, Naoto Yamashita, Toshihiko Einishi, Mitsunori Saito, Kouhei Fukumi, and Junji Nishii  »View Author Affiliations

Applied Optics, Vol. 52, Issue 7, pp. 1377-1382 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (5063 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We designed and fabricated an achromatic infrared wave plate. To examine its phase retardation characteristics, the birefringence was calculated using the effective medium theory. A wave plate with a subwavelength grating was fabricated by direct imprint lithography on a low toxic chalcogenide glass (Sb–Ge–Sn–S system) based on calculated results. As a result of imprinting onto chalcogenide glass by a glassy carbon mold, a grating with 1.63 μm depth, a fill factor of 0.7, and a 3 μm period was obtained. The phase retardation of the elements reached around 30° in the 8.5–10.5 μm wavelength range. The fabrication of the infrared wave plate is less costly compared with conventional crystalline wave plates.

© 2013 Optical Society of America

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(260.3060) Physical optics : Infrared
(050.2065) Diffraction and gratings : Effective medium theory
(050.2555) Diffraction and gratings : Form birefringence
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: October 22, 2012
Revised Manuscript: January 18, 2013
Manuscript Accepted: January 24, 2013
Published: February 22, 2013

Itsunari Yamada, Naoto Yamashita, Toshihiko Einishi, Mitsunori Saito, Kouhei Fukumi, and Junji Nishii, "Design and fabrication of an achromatic infrared wave plate with Sb–Ge–Sn–S system chalcogenide glass," Appl. Opt. 52, 1377-1382 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999). [CrossRef]
  2. C. S. L. Chun, “Microscale waveplates for polarimetric infrared imaging,” Proc. SPIE 5074, 286–297 (2003). [CrossRef]
  3. C. A. Hill, G. N. Pearson, P. Tapster, J. M. Vaughan, and G. M. Miller, “Polarization states and output powers of a CO2laser with an electro-optic phase retarder,” Appl. Opt. 35, 5381–5385 (1996). [CrossRef]
  4. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Subwavelength transmission grating retarders for use at 10.6 μm,” Appl. Opt. 35, 6195–6202 (1996). [CrossRef]
  5. Http://www.clevelandcrystals.com/waveplates.htm .
  6. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566–1572 (1997). [CrossRef]
  7. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wave region,” Opt. Express 5, 163–168 (1999). [CrossRef]
  8. W. Yu, A. Mizutani, H. Kikuta, and T. Konishi, “Reduced wavelength-dependent quarter-wave plate fabricated by a multilayered subwavelength structure,” Appl. Opt. 45, 2601–2606 (2006). [CrossRef]
  9. B. Päivänranta, N. Passilly, J. Pietarinen, P. Laakkonen, M. Kuittinen, and J. Tervo, “Low-cost fabrication of form-birefringent quarter-wave plates,” Opt. Express 16, 16334–16342 (2008). [CrossRef]
  10. S. C. Saha, Y. Ma, J. P. Grant, A. Khalid, and D. R. S. Cumming, “Imprinted terahertz artificial dielectric quarter wave plates,” Opt. Express 18, 12168–12175 (2010). [CrossRef]
  11. G. Kang, Q. Tan, X. Wang, and G. Jin, “Achromatic phase retarder applied to MWIR & LWIR dual-band,” Opt. Express 18, 1695–1703 (2010). [CrossRef]
  12. M. Scheller, C. Jördens, and M. Koch, “Terahertz form birefringence,” Opt. Express 18, 10137–10142 (2010). [CrossRef]
  13. S. Chou, P. Krauss, and P. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129–4133 (1996). [CrossRef]
  14. T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, and Y. Hirai, “Fabrication of 1/4 wave plate by nanocasting lithography,” J. Vac. Sci. Technol. B 23, 2939–2943 (2005). [CrossRef]
  15. J. J. Wang, L. Chen, X. Liu, P. Sciortino, F. Liu, F. Walters, and X. Deng, “30 nm-wide aluminum nanowire grid for ultrahigh contrast and transmittance polarizers made by UV-nanoimprint lithography,” Appl. Phys. Lett. 89, 141105 (2006). [CrossRef]
  16. L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90, 063111 (2007). [CrossRef]
  17. H. Takebe, M. Kuwabata, M. Komori, N. Fukugami, M. Soma, and T. Kusuura, “Imprinted optical pattern of low-softening phosphate glass,” Opt. Lett. 32, 2750–2752 (2007). [CrossRef]
  18. T. Mori, Y. Kimoto, H. Kasa, K. Kintaka, N. Hotou, J. Nishii, and Y. Hirai, “Mold design and fabrication for surface relief gratings by glass nanoimprint,” Jpn. J. Appl. Phys. 48, 06FH20 (2009). [CrossRef]
  19. D. Vandormael, S. Habraken, J. Loicq, C. Lenaerts, and D. Mawet, “Anti-reflective sub-wavelength patterning of IR optics,” Proc. SPIE 6395, 63950L (2006). [CrossRef]
  20. M. Solmaz, H. Park, C. K. Madsen, and X. Cheng, “Patterning chalcogenide glass by direct resist-free thermal nanoimprint,” J. Vac. Sci. Technol. B 26, 606–610 (2008). [CrossRef]
  21. T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18, 19286–19291 (2010). [CrossRef]
  22. Http://www.isuzuglass.com/development/iir.html .
  23. Y. Ono, Y. Kimura, Y. Ohta, and N. Nishida, “Antireflection effect in ultrahigh spatial-frequency holographic relief gratings,” Appl. Opt. 26, 1142–1146 (1987). [CrossRef]
  24. M. G. Moharam and T. K. Gaylord, “Rigorous couple-wave analysis of grating diffraction-E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451–455 (1983). [CrossRef]
  25. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited