OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: 1383–1388

Organic-based plasmonic emitters for sensing applications

Nan-Fu Chiu, Teng-Yi Huang, Chun-Chuan Kuo, Chii-Wann Lin, and Jiun-Haw Lee  »View Author Affiliations

Applied Optics, Vol. 52, Issue 7, pp. 1383-1388 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (632 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic emissions generated by excitation of an organic layer on a metal grating structure are demonstrated. The emissions correspond to the resonant condition of surface plasmon (SP) modes on the Alq3/Au interface, and the grating structure is coupled to the Au/air interface to provide light emissions. Experimental variations in pitch to control plasmonic bandgap obtained highly directional plasmonic emissions with enhanced intensity. This method is readily applicable for detecting refractive index changes by using SP-coupled fluorophores to obtain emissions of varying wavelengths and viewing angles. The calculations showed that the wavelength of the plasmonic emitter changed from 480 to 680 nm at certain viewing angles, while the concentration of contacting glucose increased from 10% to 40%. Accordingly, a device with a pitch size of 500 nm had a sensitivity of Δθe/Δn=37.76° and Δn/Δ=1.681×104 RIU (refractive index unit). Therefore, the proposed approach has potential applications in low-cost, disposable, point-of-care biosensors.

© 2013 Optical Society of America

OCIS Codes
(040.1880) Detectors : Detection
(130.3120) Integrated optics : Integrated optics devices
(250.0250) Optoelectronics : Optoelectronics
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: November 28, 2012
Manuscript Accepted: January 13, 2013
Published: February 22, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Nan-Fu Chiu, Teng-Yi Huang, Chun-Chuan Kuo, Chii-Wann Lin, and Jiun-Haw Lee, "Organic-based plasmonic emitters for sensing applications," Appl. Opt. 52, 1383-1388 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–408 (1902). [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, 1988).
  3. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968). [CrossRef]
  4. E. Kretschmann, “The determination of the optical constants of metals by excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971). [CrossRef]
  5. D. Gifford and D. G. Hall, “Extraordinary transmission of organic photoluminescence through an otherwise opaque metal layer via surface plasmon cross coupling,” Appl. Phys. Lett. 80, 3679–3681 (2002). [CrossRef]
  6. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673–3685 (2004). [CrossRef]
  7. J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87, 241109 (2005). [CrossRef]
  8. I. Pockrand and A. Brillante, “Nonradiative decay of excited molecules near a metal surface,” Chem. Phys. Lett. 69, 499–504 (1980). [CrossRef]
  9. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: a new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307, 435–439 (2003). [CrossRef]
  10. G. Winter and W. L. Barnes, “Emission of light through thin silver films via near-field coupling to surface plasmon polaritons,” Appl. Phys. Lett. 88, 051109 (2006). [CrossRef]
  11. J. Kalkman, C. Strohhofer, B. Gralak, and A. Polman, “Surface plasmon polariton modified emission of erbium in a metallodielectric grating,” Appl. Phys. Lett. 83, 30–32 (2003). [CrossRef]
  12. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003). [CrossRef]
  13. N.-F. Chiu, C.-W. Lin, J.-H. Lee, C.-H. Kuan, K.-C. Wu, and C.-K. Lee, “Enhanced luminescence of organic/metal nanostructure for grating coupler active long-range surface plasmonic device,” Appl. Phys. Lett. 91, 083114 (2007). [CrossRef]
  14. N.-F. Chiu, C. Yu, S.-Y. Nien, J.-H. Lee, C.-H. Kuan, K.-C. Wu, C.-K. Lee, and C.-W. Lin, “Enhancement and tunability of active plasmonic by multilayer grating coupled emission,” Opt. Express 15, 11608–11615 (2007). [CrossRef]
  15. M. Toma, K. Toma, P. Adam, J. Homola, W. Knoll, and J. Dostálek, “Surface plasmon-coupled emission on plasmonic Bragg gratings,” Opt. Express 20, 14042–14053 (2012). [CrossRef]
  16. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54, 3–15 (1999). [CrossRef]
  17. K. Schult, A. Katerkamp, D. Trau, F. Grawe, K. Cammann, and M. Meusel, “Disposable optical sensor chip for medical diagnostics: new ways in bioanalysis,” Anal. Chem. 71, 5430–5435 (1999). [CrossRef]
  18. D. Cai, Y. Lu, K. Lin, P. Wang, and H. Ming, “Improving the sensitivity of SPR sensors based on gratings by double-dips method (DDM),” Opt. Express 16, 14597–14602 (2008). [CrossRef]
  19. A. J. Benahmed and C. M. Ho, “Bandgap-assisted surface-plasmon sensing,” Appl. Opt. 46, 3369–3375 (2007). [CrossRef]
  20. S. Wedge, A. Giannattasio, and W. L. Barnes, “Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures,” Org. Electron. 8, 136–147 (2007). [CrossRef]
  21. S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009). [CrossRef]
  22. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty, and M. E. Thompson, “Reliability and degradation of organic light emitting devices,” Appl. Phys. Lett. 65, 2922–2924 (1994). [CrossRef]
  23. S. J. Yun, Y. W. Ko, and J. W. Lim, “Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition,” Appl. Phys. Lett. 85, 4896–4898 (2004). [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  25. C. W. Lin, K. P. Chen, C. N. Hsiao, S. Lin, and C. K. Lee, “Design and fabrication of an alternating dielectric multi-layer device for surface plasmon resonance sensor,” Sens. Actuators B Chem. 113, 169–176 (2006). [CrossRef]
  26. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54, 16–24 (1999). [CrossRef]
  27. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35, 187–191 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited