OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: 1399–1403

Highly Er3+-doped ZrF4-based fluoride glasses for 2.7 μm laser materials

Feifei Huang, Yanyan Guo, Yaoyao Ma, Liyan Zhang, and Junjie Zhang  »View Author Affiliations

Applied Optics, Vol. 52, Issue 7, pp. 1399-1403 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (430 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A new type of fluoride glasses with high erbium-doping concentration (up to 6 mol. % Er3+) is investigated. The intensive 2.7 μm fluorescence is demonstrated with minimized concentration quenching. The intensity parameters and radiative properties are determined from the absorption spectrum based on the Judd–Ofelt theory. The prepared Er3+-doped ZBYA glass possesses high predicted spontaneous-transition probability (28.92s1) and large calculated emission cross section (9.8×1021cm2). All these results indicate that this Er3+-doped ZrF4-based fluoride glass has potential applications in 2.7 μm laser materials.

© 2013 Optical Society of America

OCIS Codes
(160.3380) Materials : Laser materials
(300.6250) Spectroscopy : Spectroscopy, condensed matter
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:

Original Manuscript: December 18, 2012
Revised Manuscript: January 10, 2013
Manuscript Accepted: January 10, 2013
Published: February 22, 2013

Feifei Huang, Yanyan Guo, Yaoyao Ma, Liyan Zhang, and Junjie Zhang, "Highly Er3+-doped ZrF4-based fluoride glasses for 2.7 μm laser materials," Appl. Opt. 52, 1399-1403 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Yang, X. Wang, H. Guo, G. Dong, B. Peng, J. Qiu, R. Zhang, and Y. Shi, “Broadband near-infrared emission in Tm3+-Dy3+ codoped amorphous chalcohalide films fabricated by pulsed laser deposition,” Opt. Express 19, 26529–26535 (2011). [CrossRef]
  2. S. D. Jackon, T. A. King, and M. Pollnau, “Diode pumped erbium cascade fiber laser,” Opt. Lett. 24, 1133–1135 (1999). [CrossRef]
  3. B. J. Park, H. S. Seo, J. T. Ahn, Y. G. Choi, J. Heo, and W. Chung, “Dy3+ doped Ge-Ga-Sb-Se glasses and optical fibers for the mid-IR gain media” J. Ceram. Soc. Jpn. 116, 1087–1091 (2008). [CrossRef]
  4. L. B. Shaw, B. Cole, P. A. Thielen, J. S. Sanghera, and I. D. Aggarwal, “Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber,” IEEE J. Quantum Electron. 37, 1127–1137 (2001). [CrossRef]
  5. M. Bernier, D. Faucher, N. Caron, and R. Vallee, “Highly stable and efficient erbium-doped 2.8 μm all fiber laser,” Opt. Express 17, 16941–16946 (2009). [CrossRef]
  6. B. C. Dickinson, P. S. Golding, M. Pollanu, T. A. King, and S. D. Jackson, “Investigation of a 791 nm pulsed-pumped 2.7 um Er-doped ZBLAN fiber laser,” Opt. Commun. 191, 315–321 (2001). [CrossRef]
  7. Y. Tian, R. Xu, L. Hu, and J. Zhang, “Spectroscopic properties and energy transfer process in Er3+ doped ZrF4-based fluoride glass for 2.7 μm laser materials,” Opt. Mater. (Amsterdam) 34, 308 (2011). [CrossRef]
  8. X. Zhu and R. Jain, “10 W-level diode-pumped compact 2.78 μm ZBLAN fiber laser,” Opt. Lett. 32, 26–28 (2007). [CrossRef]
  9. X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett. 32, 2381–2383 (2007). [CrossRef]
  10. S. Tokita, M. Murakami, and S. Shimizu, “Liquid-cooled 24 W mid-infrared Er: ZBLAN fiber laser,” Opt. Lett. 34, 3062–3064 (2009). [CrossRef]
  11. S. Tokita, M. Murakami, and S. Shimizu, “Stable 10 Er ZBLAN fiber laser operating at 2.71–2.88 μm,” Opt. Lett. 20, 3942–3944 (2010). [CrossRef]
  12. D. Faucher, M. Bernier, G. Androz, N. Caron, and R. Vallee, “20 W passively cooled single-mode all-fiber laser at 2.8  μm,” Opt. Lett. 36, 1104–1106 (2011). [CrossRef]
  13. S. Tokita, M. Murakami, and S. Shimizu, “12  W Q-switched Er:ZBLAN fiber laser at 2.8 μm,” Opt. Lett. 36, 2812–2814 (2011). [CrossRef]
  14. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 1–24 (2010). [CrossRef]
  15. V. Lavin, V. D. Rodriguez, I. R. Martin, and U. R. Rodriguez-Mendoza, “Site selective study of Eu3+-doped fluorozirconate glasses and glass ceramics,” J. Lumin. 72, 437 (1997). [CrossRef]
  16. R. Lebullenger, S. Benjaballan, C. Le Deit, and M. Poulain, “Systematic substitutions in ZIBLA and ZIBLAN glasses,” J. Non-Cryst. Solids 161, 217–221 (1993). [CrossRef]
  17. Y. Tian, R. Xu, L. Hu, and J. Zhang, “2.7 μm fluorescence radiative dynamics and energy transfer between Er3+ and Tm3+ ions in fluoride glass under 800 and 980 nm excitation,” J. Quant. Spectrosc. Radiat. Transfer 113, 87–95 (2012). [CrossRef]
  18. N. Rigout, J. L. Adam, and J. Lucas, “Chemical and physical compatibilities of fluoride and fluorophosphate glasses,” J. Non-Cryst. Solids 184, 319–323 (1995). [CrossRef]
  19. J. Azkargorta, I. Parraguirre, R. Balda, and J. Fernandez, “On the origin of bichromatic laser emission in Nd3+-doped fluoride glasses, ” Opt. Express 16, 11894–11906 (2008). [CrossRef]
  20. Y. Chen, L. Wen, L. Hu, W. Chen, Y. Guyot, and G. Boulon, “Raman and optical absorption spectroscopic investigation of Yb-Er codoped phosphate glasses containing SiO2,” Opt. Lett. 7, 56–59 (2009). [CrossRef]
  21. M. D. Shinn, W. A. Sibley, M. G. Drexhage, and R. N. Brown, “Optical transitions of Er3+ ions in fluorozirconate glass,” Phys. Rev. 27, 6635–6648 (1983). [CrossRef]
  22. Y. Tian, R. Xu, L. Hu, and J. Zhang, “1.8 μm emission of highly thulium doped fluorophosphate glasses,” J. Appl. Phys. 108, 083504 (2010). [CrossRef]
  23. S. Ivanova and J. F. Pellé, “Strong 1.53 μm to NIR-VIS-UV upconversion in Er-doped fluoride glass for high-efficiency solar cells,” J. Opt. Soc. Am. B 26, 1930–1938 (2009). [CrossRef]
  24. H. Lin, D. Chen, Y. Yu, A. Yang, and Y. Wang, “Enhanced mid-infrared emissions of Er3+ at 2.7 μm via Nd3+ sensitization in chalcohalide glass,” Opt. Lett. 36, 1815–1817 (2011). [CrossRef]
  25. M. Louis, S. Hubert, E. Simoni, and J. Y. Gesland, “Energy transfer between lanthanide and actinide ions in LiYF,” Opt. Mater. 6, 121 (1996). [CrossRef]
  26. D. K. Sardar, “Judd–Ofelt analysis of the Er3+ (4f11) absorption intensities in Er3+-doped garnets,” Appl. Phys. 93, 2602–2607 (2003). [CrossRef]
  27. S. Xu, S. Dai, J. Zhang, L. Hu, and Z. Jiang, “Broadland 1.5 μm emission of erbium-doped TeO2-WO3-Nb2O3 glass for potential WDM amplifier,” Chin. Opt. Lett. 2, 106–108 (2004).
  28. F. Auzel, D. Meichenin, and H. Poignant, “Laser cross-section and quantum yield of Er3+ at 2.7 μm in a ZrF4-based fluoride glass,” Electron. Lett. 24, 909–910 (1988). [CrossRef]
  29. M. D. Shinn and W. A. Sibley, “Optical transitions of Er3+ions in fluorozirconate glass,” Phys. Rev. 27, 6635–6648 (1983). [CrossRef]
  30. J. Heo, Y. B. Shin, and J. N. Jang, “Spectroscopic analysis of Tm3+ in PbO-Bi2O3-Ga2O3 glass,” Appl. Opt. 34, 4284–4289 (1995). [CrossRef]
  31. T. Schweizer, D. W. Hewark, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3 mm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1596 (1996). [CrossRef]
  32. S. A. Payne, L. L. Chase, L. K. Simith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992). [CrossRef]
  33. B. Wang, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Opt. Mater. 31, 1658 (2009). [CrossRef]
  34. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross section,” Opt. Lett. 16, 258–260 (1991). [CrossRef]
  35. X. L. Zou and H. Toratani, “Spectroscopic properties and energy transfers in Tm3+ singly- and doubly-doped glasses,” J. Non-Cryst. Solids 195, 113–124 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited