OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: 1413–1422

Feasibility of nanofluid-based optical filters

Robert A. Taylor, Todd P. Otanicar, Yasitha Herukerrupu, Fabienne Bremond, Gary Rosengarten, Evatt R. Hawkes, Xuchuan Jiang, and Sylvain Coulombe  »View Author Affiliations


Applied Optics, Vol. 52, Issue 7, pp. 1413-1422 (2013)
http://dx.doi.org/10.1364/AO.52.001413


View Full Text Article

Enhanced HTML    Acrobat PDF (843 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this article we report recent modeling and design work indicating that mixtures of nanoparticles in liquids can be used as an alternative to conventional optical filters. The major motivation for creating liquid optical filters is that they can be pumped in and out of a system to meet transient needs in an application. To demonstrate the versatility of this new class of filters, we present the design of nanofluids for use as long-pass, short-pass, and bandpass optical filters using a simple Monte Carlo optimization procedure. With relatively simple mixtures, we achieve filters with <15% mean-squared deviation in transmittance from conventional filters. We also discuss the current commercial feasibility of nanofluid-based optical filters by including an estimation of today’s off-the-shelf cost of the materials. While the limited availability of quality commercial nanoparticles makes it hard to compete with conventional filters, new synthesis methods and economies of scale could enable nanofluid-based optical filters in the near future. As such, this study lays the groundwork for creating a new class of selective optical filters for a wide range of applications, namely communications, electronics, optical sensors, lighting, photography, medicine, and many more.

© 2013 Optical Society of America

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(230.1360) Optical devices : Beam splitters
(160.4236) Materials : Nanomaterials
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: December 17, 2012
Revised Manuscript: January 20, 2013
Manuscript Accepted: January 21, 2013
Published: February 25, 2013

Citation
Robert A. Taylor, Todd P. Otanicar, Yasitha Herukerrupu, Fabienne Bremond, Gary Rosengarten, Evatt R. Hawkes, Xuchuan Jiang, and Sylvain Coulombe, "Feasibility of nanofluid-based optical filters," Appl. Opt. 52, 1413-1422 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-7-1413

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited