OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: 1413–1422

Feasibility of nanofluid-based optical filters

Robert A. Taylor, Todd P. Otanicar, Yasitha Herukerrupu, Fabienne Bremond, Gary Rosengarten, Evatt R. Hawkes, Xuchuan Jiang, and Sylvain Coulombe  »View Author Affiliations

Applied Optics, Vol. 52, Issue 7, pp. 1413-1422 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (843 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this article we report recent modeling and design work indicating that mixtures of nanoparticles in liquids can be used as an alternative to conventional optical filters. The major motivation for creating liquid optical filters is that they can be pumped in and out of a system to meet transient needs in an application. To demonstrate the versatility of this new class of filters, we present the design of nanofluids for use as long-pass, short-pass, and bandpass optical filters using a simple Monte Carlo optimization procedure. With relatively simple mixtures, we achieve filters with <15% mean-squared deviation in transmittance from conventional filters. We also discuss the current commercial feasibility of nanofluid-based optical filters by including an estimation of today’s off-the-shelf cost of the materials. While the limited availability of quality commercial nanoparticles makes it hard to compete with conventional filters, new synthesis methods and economies of scale could enable nanofluid-based optical filters in the near future. As such, this study lays the groundwork for creating a new class of selective optical filters for a wide range of applications, namely communications, electronics, optical sensors, lighting, photography, medicine, and many more.

© 2013 Optical Society of America

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(230.1360) Optical devices : Beam splitters
(160.4236) Materials : Nanomaterials
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: December 17, 2012
Revised Manuscript: January 20, 2013
Manuscript Accepted: January 21, 2013
Published: February 25, 2013

Robert A. Taylor, Todd P. Otanicar, Yasitha Herukerrupu, Fabienne Bremond, Gary Rosengarten, Evatt R. Hawkes, Xuchuan Jiang, and Sylvain Coulombe, "Feasibility of nanofluid-based optical filters," Appl. Opt. 52, 1413-1422 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Martinu and D. Poitras, “Plasma deposition of optical films and coatings: a review,” J. Vac. Sci. Technol. A 18, 2619–2645 (2000). [CrossRef]
  2. A. G. Imenes, and D. R. Mills, “Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review,” Sol. Energy Mater. Sol. Cells 84, 19–69 (2004). [CrossRef]
  3. S. Zaitsu, T. Jitsuno, M. Nakatsuka, T. Yamanaka, and S. Motokoshi, “Optical thin films consisting of nanoscale laminated layers,” Appl. Phys. Lett. 80, 2442–2444 (2002). [CrossRef]
  4. J. Kaluza, K.-H. Funken, U. Groer, A. Neumann, and K.-J. Riffelmann, “Properties of an optical fluid filter: theoretical evaluations and measurement results,” J. Phys. IV 09, Pr3-655–Pr3-660 (1999). [CrossRef]
  5. M. A. Chendo, M. R. Jacobson, and D. E. Osborn, “Liquid and thin-film filters for hybrid solar energy conversion systems,” Solar Wind Technol. 4, 131–1381987). [CrossRef]
  6. J. Henzie, J. Lee, M. H. Lee, W. Hasan, and T. W. Odom, “Nanofabrication of plasmonic structures,” Annu. Rev. Phys. Chem. 60, 147–165 (2009). [CrossRef]
  7. R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: a review of the diverse applications of nanofluids,” J. Appl. Phys. 113, 011301 (2013). [CrossRef]
  8. R. A. Taylor, T. P. Otanicar, and G. Rosengarten, “Nanofluid-based optical filter optimization for PV/T systems,” Light Sci. Appl. 1, 1–7 (2012). [CrossRef]
  9. T. P. Otanicar, P. E. Phelan, and J. S. Golden, “Optical properties of liquids for direct absorption solar thermal energy systems,” Sol. Energy 83, 969–977 (2009). [CrossRef]
  10. T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten, and R. A. Taylor, “Nanofluid-based direct absorption solar collector,” J. Renewable Sustainable Energy 2, 033102 (2010). [CrossRef]
  11. T. P. Otanicar, I. Chowdhury, R. Prasher, and P. E. Phelan, “Band-gap tuned direct absorption for a hybrid concentrating solar photovoltaic/thermal system,” J. Sol. Energy Eng. 133, 041014 (2011). [CrossRef]
  12. T. P. Otanicar, P. E. Phelan, R. A. Taylor, and H. Tyagi, “Spatially varying extinction coefficient for direct absorption solar thermal collector optimization,” J. Sol. Energy Eng. 133, 024501 (2011). [CrossRef]
  13. T. P. Otanicar, R. A. Taylor, P. E. Phelan, and R. S. Prasher, “Impact of size and scattering mode on the optimal solar absorbing nanofluid,” in Proceedings of the ASME 2009 3rd International Conference of Energy Sustainability (American Society of Mechanical Engineers (ASME), 2009), pp. 1–6.
  14. R. A. Taylor, P. E. Phelan, T. P. Otanicar, R. Adrian, and R. Prasher, “Nanofluid optical property characterization: towards efficient direct absorption solar collectors,” Nanoscale Res. Lett. 6, 225 (2011). [CrossRef]
  15. R. A. Taylor, P. E. Phelan, T. P. Otanicar, C. A. Walker, M. Nguyen, S. Trimble, and R. Prasher, “Applicability of nanofluids in high flux solar collectors,” J. Renewable Sustainable Energy 3, 023104 (2011). [CrossRef]
  16. R. A. Taylor, P. E. Phelan, T. Otanicar, R. J. Adrian, and R. S. Prasher, “Vapor generation in a nanoparticle liquid suspension using a focused, continuous laser beam,” Appl. Phys. Lett. 95, 161907 (2009). [CrossRef]
  17. W. Lv, P. E. Phelan, R. Swaminathan, T. P. Otanicar, and R. A. Taylor, “Multifunctional core-shell nanoparticle suspensions for efficient absorption,” J. Sol. Energy Eng. 135, 021005(2013). [CrossRef]
  18. Schott, “Optical filters” (2012), retrieved 10 March 2012, http://www.schott.com/advanced_optics/english/filter/index.html?PHPSESSID=ra0uavqiou413sfj003ublirj4 .
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997), Vol. 575, p. 999.
  20. M. A. G. Soler, S. W. da Silva, V. K. Garg, A. C. Oliveira, R. B. Azevedo, A. C. M. Pimenta, E. C. D. Lima, and P. C. Morais, “Surface passivation and characterization of cobalt-ferrite nanoparticles,” Surf. Sci. 575, 12–16 (2005). [CrossRef]
  21. K. K. Fung, B. Qin, and X. X. Zhang, “Passivation of a-Fe nanoparticle by epitaxial g-Fe2O3 shell,” Mater. Sci. Eng. A 286, 135–138 (2010). [CrossRef]
  22. J. Tavares, E. J. Swanson, and S. Coulombe, “Plasma synthesis of coated metal nanoparticles with surface properties tailored for dispersion,” Plasma Processes Polym. 5, 759–769 (2008). [CrossRef]
  23. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011). [CrossRef]
  24. S. Zou, N. Janel, and G. C. Schatz, “Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes,” J. Chem. Phys. 120, 10871–10875 (2004). [CrossRef]
  25. G. Garcia, R. Buonsanti, E. L. Runnerstrom, R. J. Mendelsberg, A. Llordes, A. Anders, T. J. Richardson, and D. J. Milliron, “Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals,” Nano Lett. 11, 4415–4420(2011). [CrossRef]
  26. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys. 121, 12606–12612 (2004). [CrossRef]
  27. N. Palombo and K. Park, “Investigation of dynamic near-field radiation between quantum dots and plasmonic nanoparticles for effective tailoring of the solar spectrum,” in Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition (American Society of Mechanical Engineers (ASME), 2011), pp. 1–5.
  28. T. Pham, J. B. Jackson, N. J. Halas, and T. R. Lee, “Preparation and characterization of gold nanoshells coated with self-assembled monolayers,” Langmuir 18, 4915–4920 (2002). [CrossRef]
  29. N. Phonthammachai, J. C. Y. Kah, G. Jun, C. J. R. Sheppard, M. C. Olivo, S. G. Mhaisalkar, and T. J. White, “Synthesis of contiguous silica-gold core-shell structures: critical parameters and processes,” Langmuir 24, 5109–5112 (2008). [CrossRef]
  30. B. E. Brinson, J. B. Lassiter, C. S. Levin, R. Bardhan, N. Mirin, and N. J. Halas, “Nanoshells made easy: improving Au layer growth on nanoparticle surfaces,” Langmuir 24, 14166–14171 (2008). [CrossRef]
  31. B. G. Prevo, S. A. Esakoff, A. Mikhailovsky, and J. A. Zasadzinski, “Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation,” Small 4, 1183–1195 (2008). [CrossRef]
  32. B. Lu, X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, “Microwave absorption properties of the core/shell-type iron and nickel nanoparticles,” J. Magn. Magn. Mater. 320, 1106–1111 (2008). [CrossRef]
  33. Z. Li, L. A. Fredin, P. Tewari, S. A. DiBenedetto, M. T. Lanagan, M. A. Ratner, and T. J. Marks, “In situ catalytic encapsulation of core-shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites,” Chem. Mater. 22, 5154–5164 (2010). [CrossRef]
  34. K.-T. Yong, Y. Sahoo, M. T. Swihart, and P. N. Prasad, “Synthesis and plasmonic properties of silver and gold nanoshells on polystyrene cores of different size and of gold-silver core-shell nanostructures,” Colloids Surf. A 290, 89–105 (2006). [CrossRef]
  35. J. B. Jackson and N. J. Halas, “Silver nanoshells: variations in morphologies and optical properties,” J. Phys. Chem. B 105, 2743–2746 (2001). [CrossRef]
  36. D. G. Duff, A. Baiker, and P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation,” Langmuir 9, 2301–2309 (1993). [CrossRef]
  37. L. K. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  38. U. Kreibig and V. Vollmer, Optical Properties of Metal Clusters, 1st ed. (Springer, 2010).
  39. R. Averitt, D. Sarkar, and N. Halas, “Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth,” Phys. Rev. Lett. 78, 4217–4220(1997). [CrossRef]
  40. A. E. Neeves and M. H. Birnboim, “Composite structures for the enhancement of nonlinear-optical susceptibility,” J. Opt. Soc. Am. B 6, 787–796 (1989). [CrossRef]
  41. M. Fox, Optical Properties of Solids, 2nd ed. (Oxford University, 2010), Chap. 7, pp. 180–210.
  42. W. Lv, T. P. Otanicar, P. E. Phelan, L. Dai, R. A. Taylor, and R. Swaminathan, “Surface plasmon resonance shifts of a dispersion of core-shell nanoparticles for efficient solar absorption,” in Proceedings of Micro/Nanoscale Heat & Mass Transfer International Conference (American Society of Mechanical Engineers (ASME), 2012), pp. 1–9.
  43. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  44. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399, 167–171 (2004). [CrossRef]
  45. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, 2004), pp. 221–252.
  46. C. N. Berglund and W. E. Spicer, “Photoemission studies of copper and silver: theory,” Phys. Rev. 136, A1030–A1044(1964). [CrossRef]
  47. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998), p. 544.
  48. S. G. Moiseev, “Nanocomposite-based ultrathin polarization beamsplitter,” Opt. Spectrosc. 111, 233–240 (2011). [CrossRef]
  49. UQG, “Schott colour glass stock optical filters, order online” 2012, retrieved 17 December 2012, http://www.optical-filters.com/Schott_Filters.aspx .
  50. Z. Liang, A. Susha, and F. Caruso, “Gold nanoparticle-based core—shell and hollow spheres and ordered assemblies thereof,” Chem. Mater. 15, 3176–3183 (2003). [CrossRef]
  51. M. Zhang, M. Drechsler, and A. H. E. Müller, “Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core–shell cylindrical polymer brushes,” Chem. Mater. 16, 537–543 (2004). [CrossRef]
  52. M. A. Nash, J. J. Lai, A. S. Hoffman, P. Yager, and P. S. Stayton, ““Smart” diblock copolymers as templates for magnetic-core gold-shell nanoparticle synthesis,” Nano Lett. 10, 85–91 (2010). [CrossRef]
  53. L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian, and R. Chen, “Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate,” J. Mater. Chem. 14, 1005 (2004). [CrossRef]
  54. T. Roques-Carmes, F. Aldeek, L. Balan, S. Corbel, and R. Schneider, “Aqueous dispersions of core/shell CdSe/CdS quantum dots as nanofluids for electrowetting,” Colloids Surf. A 377, 269–277 (2011). [CrossRef]
  55. A. Abou-Hassan, R. Bazzi, and V. Cabuil, “Multistep continuous-flow microsynthesis of magnetic and fluorescent gamma-Fe2O3@SiO2 core/shell nanoparticles,” Angew. Chem. Int. Ed. Engl., Suppl. 48, 7180–7183 (2009). [CrossRef]
  56. J. M. Pringle, O. Winther-Jensen, C. Lynam, G. G. Wallace, M. Forsyth, and D. R. MacFarlane, “One step synthesis of conducting polymer-noble metal nanoparticle composites using an ionic liquid,” Adv. Funct. Mater. 18, 2031–2040 (2008). [CrossRef]
  57. K. Kaneda, T. Mitsudome, T. Mizugaki, and K. Jitsukawa, “Development of heterogeneous olympic medal metal nanoparticle catalysts for environmentally benign molecular transformations based on the surface properties of hydrotalcite,” Molecules 15, 8988–9007 (2010). [CrossRef]
  58. N. Zheng and G. D. Stucky, “A general synthetic strategy for oxide-supported metal nanoparticle catalysts,” J. Chem. Am. Soc. 128, 14278–14280 (2006). [CrossRef]
  59. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008). [CrossRef]
  60. T. C. Wang, M. F. Rubner, and R. E. Cohen, “Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size,” Langmuir 18, 3370–3375 (2002). [CrossRef]
  61. K.-S. Kim, D. Demberelnyamba, and H. Lee, “Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids,” Langmuir 20, 556–560 (2004). [CrossRef]
  62. K. R. Gopidas, J. K. Whitesell, M. A. Fox, and N. Carolina, “Catalytic applications of a palladium-nanoparticle-cored dendrimer,” Nano Lett. 3, 1–4 (2003). [CrossRef]
  63. R. D. Averitt, S. L. Westcott, and N. J. Halas, “Linear optical properties of gold nanoshells,” J. Opt. Soc. Am. B 16, 1824–1832 (1999). [CrossRef]
  64. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26, 62–69 (1968). [CrossRef]
  65. NanoComposix, “NanoComposix: gold metal nanoshells” (2012), retrieved 9 September 2012, http://nanocomposix.com/products/gold/nanoshells .
  66. NanoSight, “Nanoparticle size analysis, particle size software, LM10-HS—Products—NanoSight” (2012), retrieved 9 September 2012, http://www.nanosight.com/products/lm10-hs .
  67. F. Le, N. Lwin, N. Halas, and P. Nordlander, “Plasmonic interactions between a metallic nanoshell and a thin metallic film,” Phys. Rev. B 76, 165410 (2007). [CrossRef]
  68. NanoComposix, “NanoComposix products” (2012), retrieved 22 November 2012, http://nanocomposix.com/products .
  69. A. Ghadimi, R. Saidur, and H. S. C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions,” Int. J. Heat Mass Transfer 54, 4051–4068 (2011). [CrossRef]
  70. Y. Hwang, J. Lee, C. Lee, Y. Jung, S. Cheong, B. Ku, and S. Jang, “Stability and thermal conductivity characteristics of nanofluids,” Thermochim. Acta 455, 70–74 (2007). [CrossRef]
  71. J. Tavares and S. Coulombe, “Dual plasma synthesis and characterization of a stable copper-ethylene glycol nanofluid,” Powder Technol. 210, 132–142 (2011). [CrossRef]
  72. J. U. Kang, “Observation of random lasing in gold-silica nanoshell/water solution,” Appl. Phys. Lett. 89, 221112(2006). [CrossRef]
  73. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett. 9, 2825–2831 (2009). [CrossRef]
  74. G. S. Terentyuk, G. N. Maslyakova, L. V. Suleymanova, N. G. Khlebtsov, B. N. Khlebtsov, G. G. Akchurin, I. L. Maksimova, and V. V. Tuchin, “Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy,” J. Biomed. Opt. 14, 021016 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited