OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: 1453–1460

Quantitative phase maps denoising of long holographic sequences by using SPADEDH algorithm

Pasquale Memmolo, Maria Iannone, Maurizio Ventre, Paolo Antonio Netti, Andrea Finizio, Melania Paturzo, and Pietro Ferraro  »View Author Affiliations


Applied Optics, Vol. 52, Issue 7, pp. 1453-1460 (2013)
http://dx.doi.org/10.1364/AO.52.001453


View Full Text Article

Enhanced HTML    Acrobat PDF (1042 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a denoising method for digital holography mod 2π wrapped phase map by using an adaptation of the SPArsity DEnoising of Digital Holograms (SPADEDH) algorithm. SPADEDH is a l1 minimization algorithm able to suppress the noise components on digital holograms without any prior knowledge or estimation about the statistics of noise. We test our algorithm with either general numerical simulated wrapped phase, quantifying the performance with different efficiency parameters and comparing it with two popular denoising strategies, i.e., median and Gaussian filters, and specific experimental tests, by focusing our attention on long-sequence wrapped quantitative phase maps (QPMs) of in vitro cells, which aim to have uncorrupted QPMs. In addition, we prove that the proposed algorithm can be used as a helper for the typical local phase unwrapping algorithms.

© 2013 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(180.0180) Microscopy : Microscopy
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: October 12, 2012
Revised Manuscript: January 24, 2013
Manuscript Accepted: January 29, 2013
Published: February 27, 2013

Citation
Pasquale Memmolo, Maria Iannone, Maurizio Ventre, Paolo Antonio Netti, Andrea Finizio, Melania Paturzo, and Pietro Ferraro, "Quantitative phase maps denoising of long holographic sequences by using SPADEDH algorithm," Appl. Opt. 52, 1453-1460 (2013)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-52-7-1453


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Bishara, H. Zhu, and A. Ozcan, “Holographic opto-fluidic microscopy,” Opt. Express 18, 27499–27510 (2010). [CrossRef]
  2. D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic system for three-dimensional sensing and identification of micro-organisms with digital holographic microscopy,” Opt. Lett. 35, 4066–4068 (2010). [CrossRef]
  3. N. T. Shaked, M. T. Rinehart, and A. Wax, “Dual-interference-channel quantitative-phase microscopy of live cell dynamics,” Opt. Lett. 34, 767–769 (2009). [CrossRef]
  4. X. Yu, M. Cross, C. Liu, D. C. Clark, D. T. Haynie, and M. K. Kim, “Measurement of the traction force of biological cells by digital holography,” Biomed. Opt. Express 3, 153–159 (2012). [CrossRef]
  5. P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro, “Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–25842 (2011). [CrossRef]
  6. P. Langehanenberg, L. Ivanova, I. Bernhardt, S. Ketelhut, A. Vollmer, D. Dirksen, G. Georgiev, G. von Bally, and B. Kemper, “Automated three-dimensional tracking of living cells by digital holographic microscopy,” J. Biomed. Opt. 14, 014018 (2009). [CrossRef]
  7. J. F. Restrepo and J. Garcia-Sucerquia, “Automatic three-dimensional tracking of particles with high-numerical-aperture digital lensless holographic microscopy,” Opt. Lett. 37, 752–754 (2012). [CrossRef]
  8. M. Paturzo, A. Finizio, P. Memmolo, R. Puglisi, D. Balduzzi, A. Galli, and P. Ferraro, “Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography,” Lab Chip 12, 3073–3076 (2012). [CrossRef]
  9. D. Gisselsson, Y. Jin, D. Lindgren, J. Persson, L. Gisselsson, S. Hanks, D. Sehic, L. H. Mengelbier, I. Øra, N. Rahman, F. Mertens, F. Mitelman, and N. Mandahl, “Generation of trisomies in cancer cells by multipolar mitosis and incomplete cytokinesis,” Proc. Natl. Acad. Sci. USA 107, 20489–20493 (2010). [CrossRef]
  10. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley-Interscience, 1998).
  11. R. M. Goldstein, H. A. Zebken, and C. L. Werner, “Satellite radar interferometry: two-dimensional phase unwrapping,” Radio Sci. 23, 713 (1988). [CrossRef]
  12. T. M. Venema and J. D. Schmidt, “Optical phase unwrapping in the presence of branch points,” Opt. Express 16, 6985–6998 (2008). [CrossRef]
  13. M. Gdeisat, M. Arevalillo-Herráez, D. Burton, and F. Lilley, “Three-dimensional phase unwrapping using the Hungarian algorithm,” Opt. Lett. 34, 2994–2996 (2009). [CrossRef]
  14. A. Asundi and Zhou Wensen, “Fast unwrapping algorithm based on gray-scale mask and floodfill,” Appl. Opt. 37, 5416–5420 (1998). [CrossRef]
  15. R. Yamaki and A. Hirose, “Singularity-spreading phase unwrapping,” IEEE Trans. Geosci. Remote Sens. 45, 3240–3251 (2007). [CrossRef]
  16. J. Bioucas-Dias, V. Katkovnik, J. Astola, and K. Egiazarian, “Absolute phase estimation: adaptive local denoising and global unwrapping,” Appl. Opt. 47, 5358–5369 (2008). [CrossRef]
  17. S. Tomioka, S. Heshmat, N. Miyamoto, and S. Nishiyama, “Phase unwrapping for noisy phase maps using rotational compensator with virtual singular points,” Appl. Opt. 49, 4735–4745 (2010). [CrossRef]
  18. Y. H. Huang Howard, L. Tian, Z. Zhang, Y. Liu, Z. Chen, and G. Barbastathis, “Path-independent phase unwrapping using phase gradient and total-variation (TV) denoising,” Opt. Express 20, 14075–14089 (2012). [CrossRef]
  19. G. Fornaro, G. Franceschetti, R. Lanari, E. Sansosti, and M. Tesauro, “Global and local phase-unwrapping techniques: a comparison,” J. Opt. Soc. Am. A 14, 2702–2708 (1997). [CrossRef]
  20. J. Strand and T. Taxt, “Performance evaluation of two-dimensional phase unwrapping algorithms,” Appl. Opt. 38, 4333–4344 (1999). [CrossRef]
  21. Y.-H. Li, S.-L. Qu, X.-J. Chen, and Z.-Y. Luo, “Phase pattern denoising using a regularized cost function with complex-valued Markov random fields based on a discrete model,” Appl. Opt. 49, 6845–6849 (2010). [CrossRef]
  22. Y. H. Huang, F. Janabi-Sharifi, Y. Liu, and Y. Y. Hung, “Dynamic phase measurement in shearography by clustering method and Fourier filtering,” Opt. Express 19, 606–615 (2011). [CrossRef]
  23. M. A. Navarro, J. C. Estrada, M. Servin, J. A. Quiroga, and J. Vargas, “Fast two-dimensional simultaneous phase unwrapping and low-pass filtering,” Opt. Express 20, 2556–2561 (2012). [CrossRef]
  24. J. F. Weng and Y. L. Lo, “Integration of robust filters and phase unwrapping algorithms for image reconstruction of objects containing height discontinuities,” Opt. Express 20, 10896–10920 (2012). [CrossRef]
  25. P. Memmolo, I. Esnaola, A. Finizio, M. Paturzo, P. Ferraro, and A. M. Tulino, “SPADEDH: a sparsity-based denoising method of digital holograms without knowing the noise statistics,” Opt. Express 20, 17250–17257 (2012). [CrossRef]
  26. S. Sotthivirat and J. A. Fessler, “Penalized-likelihood image reconstruction for digital holography,” J. Opt. Soc. Am. A 21, 737–750 (2004). [CrossRef]
  27. M. Elad, M. A. T. Figueiredo, and M. Yi, “On the role of sparse and redundant representations in image processing,” Proc. IEEE 98, 972–982 (2010). [CrossRef]
  28. Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE Signal Process. Lett. 9, 81–84 (2002). [CrossRef]
  29. Y. Zhou and H. Li, “Adaptive noise reduction method for DSPI fringes based on bi- dimensional ensemble empirical mode decomposition,” Opt. Express 19, 18207–18215 (2011). [CrossRef]
  30. D. Zonoobi, A. A. Kassim, and Y. V. Venkatesh, “Gini index as sparsity measure for signal reconstruction from compressive samples,” IEEE J. Select. Topics Signal Process. 5, 927–932 (2011). [CrossRef]
  31. D. Donoho, Y. Tsaig, I. Drori, and J-L. Starck, “Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit,” Stanford Tech. Rep. (Stanford University, 2006), pp. 1–39.
  32. R. T. Franceschi, W. M. James, and G. Zerlauth, “1 alpha, 25-dihydroxyvitamin D3 specific regulation of growth, morphology, and fibronectin in a human osteosarcoma cell line,” J. Cell. Physiol. 123, 401–409 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: AVI (2145 KB)     
» Media 2: AVI (919 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited