OSA's Digital Library

Applied Optics

Applied Optics


  • Editor: Joseph N. Mait
  • Vol. 52, Iss. 7 — Mar. 1, 2013
  • pp: 1461–1467

Temperature response of an all-solid photonic bandgap fiber for sensing applications

Rafael E. P. de Oliveira, Jonathan C. Knight, Toshiki Taru, and Christiano J. S. de Matos  »View Author Affiliations

Applied Optics, Vol. 52, Issue 7, pp. 1461-1467 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (968 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spectral shift due to temperature in the photonic bandgap (PBG) of an all-solid PBG fiber is investigated, aiming at discrete and distributed temperature sensing. A temperature rise induces a red shift in the bandgap spectra, which can be easily and precisely monitored by measuring the fiber transmission near one of the band edges. Two different situations that are potentially compatible with distributed and quasi-distributed sensing were investigated: heating a 2 m section of a longer (10m) fiber, and heating the whole extension of a fiber that is tens of centimeters in length and was spliced to conventional fibers on both sides. The latter setup yielded bandgap spectral shifts up to 35pm/°C. Aiming at discrete sensing, a short (50mm) fiber section was subjected to a tight bend so as to exhibit increased temperature sensitivity. Choosing the position of the bend allows for reconfiguration, on demand, of the sensor. A semi-analytical method to identify the spectral position of bandgaps was used to model the fiber transmission, as well as the bandgap shift with temperature, with consistent results.

© 2013 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: November 20, 2012
Revised Manuscript: February 4, 2013
Manuscript Accepted: February 5, 2013
Published: February 28, 2013

Rafael E. P. de Oliveira, Jonathan C. Knight, Toshiki Taru, and Christiano J. S. de Matos, "Temperature response of an all-solid photonic bandgap fiber for sensing applications," Appl. Opt. 52, 1461-1467 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Nakstad and J. T. Kringlebotn, “Oil and gas applications probing oil fields,” Nat. Photonics 2, 147–149 (2008). [CrossRef]
  2. R. Willsch, W. Ecke, and H. Bartelt, “Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering,” in Optical Fiber Sensors Conference Technical Digest (IEEE, 2002), pp. 49–54.
  3. P. E. Sanders, “Fiber-optic sensors: playing both sides of the energy equation,” Opt. Photonics News 22(1), 36–42 (2011). [CrossRef]
  4. A. Othonos, “Fiber Bragg gratings,” Rev. Sci. Instrum. 68, 4309–4341 (1997). [CrossRef]
  5. J. P. Dakin, D. J. Pratt, G. W. Bibby, and J. N. Ross, “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985). [CrossRef]
  6. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995). [CrossRef]
  7. R. Bernini, A. Minardo, and L. Zeni, “Distributed optical fiber sensors,” in An Introduction to Optoelectronic Sensors, Vol. 7 of Series in Optics and Photonics (World Scientific Publishing Company, 2009), pp. 77–94.
  8. R. Feced, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A high spatial resolution distributed optical fiber sensor for high-temperature measurements,” Rev. Sci. Instrum. 68, 3772–3776 (1997). [CrossRef]
  9. M. A. Soto, G. Bolognini, and F. D. Pasquale, “Analysis of optical pulse coding in spontaneous Brillouin-based distributed temperature sensors,” Opt. Express 16, 19097–19111 (2008). [CrossRef]
  10. X. Bao and L. Chen, “Recent progress in Brillouin scattering based fiber sensors,” Sensors 11, 4152–4187 (2011). [CrossRef]
  11. P. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  12. J. C. Knight, J. Broeng, T. A. Birks, and P. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998). [CrossRef]
  13. Q. Shi, F. Lv, Z. Whang, L. Jin, J. J. Hu, Z. Liu, G. Kai, and X. Dong, “Environmentally stable Fabry–Pérot-type strain sensor based on hollow-core photonic bandgap fiber,” IEEE Photon. Technol. Lett. 20, 237–239 (2008). [CrossRef]
  14. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, “Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber,” Appl. Opt. 45, 2261–2264 (2006). [CrossRef]
  15. T. R. Wolinski, A. Czapla, S. Ertman, M. Tefelska, A. W. Domanski, J. Wojcik, E. Nowinowski-Kruszelnicki, and R. Dabrowski, “Photonic liquid crystal fibers for sensing applications,” IEEE Trans. Instrum. Meas. 57, 1796–1802 (2008). [CrossRef]
  16. L. Scolari, S. Gauza, H. Xianyu, L. Zhai, L. Eskildsen, T. T. Alkeskjold, S.-T. Wu, and A. Bjarklev, “Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals,” Opt. Express 17, 3754–3764 (2009). [CrossRef]
  17. N. M. Litchnitser and E. Poliakov, “Antiresonant guiding microstructured optical fibers for sensing applications,” Appl. Phys. B 81, 347–351 (2005). [CrossRef]
  18. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004). [CrossRef]
  19. S. H. Aref, O. Frazão, L. A. Ferreira, F. M. Araújo, J. L. Santos, H. Latifi, P. Foy, T. Hawkins, J. Ballato, T. Her, and F. Farahi, “Modal interferometer based on ARROW fiber for strain and temperature measurement,” IEEE Photon. Technol. Lett. 21, 1636–1638 (2009). [CrossRef]
  20. Y. Geng, X. Li, X. Tan, Y. Deng, and Y. Yu, “Mode-beating-enabled stopband narrowing in all-solid photonic bandgap fiber and sensing applications,” Opt. Express 19, 8167–8172 (2011). [CrossRef]
  21. T. A. Birks, G. J. Pearce, and D. M. Bird, “Approximate band structure calculation for photonic bandgap fibres,” Opt. Express 14, 9483–9490 (2006). [CrossRef]
  22. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses,” J. Lightwave Technol. 12, 1338–1342 (1994). [CrossRef]
  23. A. S. Huang, Y. Arie, C. C. Neil, and J. M. Hammer, “Study of refractive index of GeO2:SiO2 mixtures using deposited-thin-film optical waveguides,” Appl. Opt. 24, 4404–4407 (1985). [CrossRef]
  24. M. Bass, Handbook of Optics Volume II Devices, Measurements and Properties, 2nd ed. (McGraw-Hill, 1995).
  25. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13, 2503–2511 (2005). [CrossRef]
  26. G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–196 (1995). [CrossRef]
  27. T. Mizunami, T. Fukuda, and A. Hayash, “Fabrication and characterization of long-period-grating temperature sensors using Ge-B-codoped photosensitive fibre and single-mode fibre,” Meas. Sci. Technol. 15, 1467–1473 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited